An empirically optimized classical force-field for molecular simulations of 2,4,6-trinitrotoluene (TNT) and 2,4-dinitrotoluene (DNT)

J Phys Chem A. 2012 Aug 16;116(32):8374-81. doi: 10.1021/jp305362n. Epub 2012 Aug 2.

Abstract

An empirical classical all-atom specific force-field for use in molecular dynamics simulations (MD) has been developed to reproduce the experimental densities and structures of trinitrotoluene (TNT) in its crystalline and liquid phases at six different temperatures, as well as its enthalpies of sublimation and fusion. The average structural parameters and partial charges were obtained from density functional theory optimizations of single molecules at the B3LYP/6-311+G** level. The other constants for the potential were adjusted in order to obtain a classical force-field, which is able to reproduce the aforementioned properties for TNT with a high degree of accuracy. This force-field was also found to predict closely the experimental densities and structures of 2,4-dinitrotoluene (2,4-DNT) in its crystalline and liquid phases as well as its enthalpy of sublimation. It was a bit less successful for its enthalpy of fusion, but it still remained reasonable, and the model mechanical properties were of the right order of magnitude. As such, this fairly simple force-field can be used for MD simulations of both TNT and 2,4-DNT nitroaromatic compounds.