Voltammetric determination of Os(VI)-modified oligosaccharides at nanomolar level

Bioelectrochemistry. 2012 Dec:88:8-14. doi: 10.1016/j.bioelechem.2012.04.005. Epub 2012 May 3.

Abstract

Glycoproteins participate in various biological events, including disease progression. Currently, there is a pressing need for development of new simple and inexpensive methods for glycoprotein carbohydrate component (mostly oligosaccharides, OLSs) analysis and electrochemical methods were little applied in their analysis. Polysaccharides and OLS were long time considered as electroinactive compounds. We show that OLS adducts with six-valent osmium complexes are electroactive and can be determined at mercury and carbon electrodes. Adducts of OLSs with complex of Os(VI) with N,N,N',N'-tetramethylethylenediamine (tmen) can be prepared by mixing of OLS with [Os(VI)tmen] either at 37°C overnight or at 75°C in 10-15min. We modified 3α,6α-mannopentaose (MPO), stachyose and γ-cyclodextrin with [Os(VI)tmen]. The OLS adducts produced CV redox couples at hanging mercury drop electrode (HMDE) and at pyrolytic graphite electrode (PGE). 6nM MPO was determined by conventional adsorptive stripping at HMDE with RSD 5.3% directly in the reaction mixture. Similar determination at PGE was much less sensitive. Using adsorptive transfer (ex situ) stripping at PGE, μL volumes of OLS were sufficient for the analysis. Protein glycosylation stands at present in focus of medicinal chemistry because of its importance in various diseases and their diagnostics. Our paper represents first steps toward application of electrochemical methods in biomedical analysis of OLS.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adsorption
  • Alkenes / chemistry
  • Carbon / chemistry
  • Electrochemistry / instrumentation
  • Electrochemistry / methods*
  • Electrodes
  • Limit of Detection
  • Mercury / chemistry
  • Oligosaccharides / analysis*
  • Oligosaccharides / chemistry*
  • Organometallic Compounds / chemistry*
  • Osmium / chemistry*
  • Temperature
  • Time Factors

Substances

  • Alkenes
  • Oligosaccharides
  • Organometallic Compounds
  • Osmium
  • 2,3-dimethyl-2-butene
  • mannopentaose
  • Carbon
  • Mercury