Prolonged lidocaine metabolizing activity of primary hepatocytes with spheroid culture using polyurethane foam as a culture substratum

Cytotechnology. 1997 Sep;24(3):235-42. doi: 10.1023/A:1007935016223.

Abstract

Primary rat hepatocytes formed spheroids in the pores of polyurethane foam (PUF) used as a culture substratum. The hepatocytes in monolayer and spheroid stationary culture converted lidocaine to monoethylglycinexylidide (MEGX) which was N-deethylation of lidocaine. The metabolic activity of the hepatocytes/spheroid stationary culture system was 1.5∼2.0-fold higher than that of monolayer culture for 10 days. The activity of albumin production and cell survival of hepatocytes in monolayer and spheroid cultures decrease due to lidocaine treatment dependend on the lidocaine concentration, but the activity and cell survival in PUF/spheroid stationary culture were maintained at a higher level than that in monolayer culture under the lidocaine treatment. We developed a device for an in vitro liver model, drug metabolism simulator (DMS), using a PUF/spheroid packed-bed module including 4.00 ± 0.68 × 10(7) hepatocytes and analyzed pharmacokinetics of lidocaine in a one-compartment model. Lidocaine clearance and extraction ratio of hepatocytes in the DMS corresponded to 1.354 ± 0.318 ml/min/g-liver and 0.677 ± 0.0159/g-liver, respectively (N=4). These values were comparable with in vivo values, 1.930 ml/min g-liver and 0.965/g-liver reported by Nyberg (1977). Consequently, PUF/spheroid culture maintained high lidocaine metabolizing activity over a long term and seems to provide a promising culture system as a drug metabolism simulator which will be used for drug screening, cytotoxicity tests and prediction of pharmacokinetics.