Inelasticity of human carotid atherosclerotic plaque

Ann Biomed Eng. 2011 Sep;39(9):2445-55. doi: 10.1007/s10439-011-0331-4. Epub 2011 May 27.

Abstract

Little mechanical test data exists regarding the inelastic behavior of atherosclerotic plaques. As a result finite element (FE) models of stenting procedures commonly use hyperelastic material models to describe the soft tissue response thus limiting the accuracy of the model to the expansion stage of stent implantation and leave them unable to predict the lumen gain. In this study, cyclic mechanical tests were performed to characterize the inelastic behavior of fresh human carotid atherosclerotic plaque tissue due to radial compressive loading. Plaques were classified clinically as either mixed (M), calcified (Ca), or echolucent (E). An approximately linear increase in the plastic deformation was observed with increases in the peak applied strain for all plaque types. While calcified plaques generally appeared stiffest, it was observed that the clinical classification of plaques had no significant effect on the magnitude of permanent deformation on unloading. The test data was characterized using a constitutive model that accounts for both permanent deformation and stress softening to describe the compressive plaque behavior on unloading. Material constants are reported for individual plaques as well as mean values for each plaque classification. This data can be considered as a first step in characterizing the inelastic behavior of atherosclerotic plaques and could be used in combination with future mechanical data to improve the predictive capabilities of FE models of angioplasty and stenting procedures particularly in relation to lumen gain.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Aged, 80 and over
  • Calcinosis / physiopathology
  • Carotid Artery Diseases / physiopathology*
  • Elasticity*
  • Female
  • Finite Element Analysis
  • Humans
  • Male
  • Middle Aged
  • Models, Cardiovascular
  • Plaque, Atherosclerotic / physiopathology*
  • Stress, Mechanical