Biological nitrogen removal with a real-time control strategy using moving slope changes of pH(mV)- and ORP-time profiles

Water Res. 2011 Jan;45(1):171-8. doi: 10.1016/j.watres.2010.08.030. Epub 2010 Aug 25.

Abstract

A new real-time control strategy using moving slope changes of oxidation-reduction potential (ORP)- and pH(mV)-time profiles was designed. Its effectiveness was evaluated by operating a farm-scale sequencing batch reactor (SBR) process using the strategy. The working volume of the SBR was 18 m(3), and the volumetric loading rate of influent was 1 m(3) cycle(-1). The SBR process comprised six phases: feeding → anoxic → anaerobic → aerobic → settle → discharge. The anoxic and aerobic phases were controlled by the developed real-time control strategy. The nitrogen break point (NBP) in the pH(mV)-time profile and the nitrate knee point (NKP) in the ORP-time profile were designated as real-time control points for the aerobic and anoxic phases, respectively. Through successful real-time control, the duration of the aerobic and anoxic phases could be optimized and this resulted in very high N removal and a flexible hydraulic retention time. Despite the large variation in the loading rate (0.5-1.8 kg NH(4)-N m(-3) cycle(-1)) due to influent strength fluctuation, complete removal of NH(4)-N (100%) was always achieved. The removal efficiencies of soluble nitrogen (NH(4)-N plus NO(x)-N), soluble total organic carbon, and soluble chemical oxygen demand were 98%, 90%, and 82%, respectively. Monitoring the ORP and pH(mV) revealed that pH(mV) is a more reliable control parameter than ORP for the real-time control of the oxic phase. In some cases, a false NBP momentarily appeared in the ORP-time profile but was not observed in the pH(mV)-time profile. In contrast, ORP was more the reliable control parameter for NKP detection in the anoxic phase, since the appearance of NKP in the pH(mV)-time profile was sometimes vague.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Hydrogen-Ion Concentration
  • Nitrogen / isolation & purification*
  • Oxidation-Reduction
  • Sewage
  • Swine
  • Waste Disposal, Fluid / methods*

Substances

  • Sewage
  • Nitrogen