Supercooled liquid dynamics studied via shear-mechanical spectroscopy

J Phys Chem B. 2008 Dec 25;112(51):16320-5. doi: 10.1021/jp805097r.

Abstract

We report dynamical shear-modulus measurements for five glass-forming liquids (pentaphenyltrimethyltrisiloxane, diethyl phthalate, dibutyl phthalate, 1,2-propanediol, and m-touluidine). The shear-mechanical spectra are obtained by the piezoelectric shear-modulus gauge (PSG) method. This technique allows one to measure the shear modulus (10(5)-10(10) Pa) of the liquid within a frequency range from 1 mHz to 10 kHz. We analyze the frequency-dependent response functions to investigate whether time-temperature superposition (TTS) is obeyed. We also study the shear-modulus loss-peak position and its high-frequency part. It has been suggested that when TTS applies, the high-frequency side of the imaginary part of the dielectric response decreases like a power law of the frequency with an exponent -1/2. This conjecture is analyzed on the basis of the shear mechanical data. We find that TTS is obeyed for pentaphenyltrimethyltrisiloxane and in 1,2-propanediol while in the remaining liquids evidence of a mechanical beta process is found. Although the high-frequency power law behavior w(-alpha) of the shear loss may approach a limiting value of alpha = 0.5 when lowering the temperature, we find that the exponent lies systematically above this value (around 0.4). For the two liquids without beta relaxation (pentaphenyltrimethyltrisiloxane and 1,2-propanediol) we also test the shoving model prediction, according to which the relaxation time activation energy is proportional to the instantaneous shear modulus. We find that the data are well described by this model.