Up-regulation of IRAK-M is essential for endotoxin tolerance induced by a low dose of lipopolysaccharide in Kupffer cells

J Surg Res. 2008 Nov;150(1):34-9. doi: 10.1016/j.jss.2007.12.759. Epub 2008 Jan 10.

Abstract

Background: Endotoxin tolerance (ET) is an important mechanism to maintain the homeostasis of Kupffer cells (KCs), because KCs are continually exposed to various pathogen-associated molecular patterns including lipopolysaccharide (LPS). ET involves multiple changes in cell signal transduction pathways; however, not all signaling pathways are down-regulated and some proteins are up-regulated. The latter proteins may be counter regulatory, including interleukin-1 receptor-associated kinase M (IRAK-M) expression. The aim of this study is to clarify weather or not IRAK-M is involved in the mechanisms of ET in KCs through dampening nuclear factor-kappa B (NF-kappaB) mediated pathway.

Materials and methods: KCs isolated from male C57BL/6J mice were seeded in 24-well plates at 1 x 10(6) cells/well and cultured overnight prior to transfection, were randomly divided into two groups: the pIRAK-M-short hairpin RNA (shRNA) group (transfected with IRAK-M shRNA) and the control group (transfected with control vector); 24 h after transfection, the two groups were further randomly divided into two subgroups: non-endotoxin pretreatment group (incubation in Dulbecco's modified Eagle's medium [Invitrogen, Carlsbad, CA] with 10% fetal bovine serum) and endotoxin pretreatment group (incubation in the same medium containing 10 ng/mL LPS), named pIRAK-M-EP, pIRAK-M-NEP, pCV-EP, and pCV-NEP, respectively. Each subgroup contained 6 wells; 24 h later, fresh media containing LPS (100 ng/mL) was added to each subgroup and incubated for an additional 3 h. The expression of IRAK-M gene and protein level were determined by reverse transcription-polymerase chain reaction and Western blot, the activities of NF-kappaB were estimated by electrophoretic mobility shift assay and enzyme-linked immunosorbent assay, and the supernatant tumor necrosis factor-alpha levels were analyzed by enzyme-linked immunosorbent assay.

Results: The recombinant plasmid of pIRAK-M-shRNA specifically inhibited IRAK-M expression after it was transfected into KCs. At 3 h after 100 ng/mL LPS was added to the medium, IRAK-M expression was significantly induced in pCV-EP than that in pCV-NEP; however, there was no difference between pIRAK-M-NEP and pIRAK-M-EP, accompanied with lowest level of NF-kappaB activation and tumor necrosis factor-alpha levels in pCV-EP, and a dramatic enhancement in the other three groups (P < 0.01).

Conclusions: Although a primary low dose of LPS stimulation obviously attenuated KCs response to the second LPS stimulation, the inhibitive influences were partly refracted in pIRAK-M-EP than in pCV-EP, indicating that the absence of IRAK-M caused abnormal enhancement of inflammatory effects. IRAK-M negatively regulates toll-like receptors signaling and involves in the mechanisms of ET in KCs through dampening NF-kappaB mediated pathway; therefore it may be a key component of this important control system, and a new target for the clinical treatment of sepsis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Interleukin-1 Receptor-Associated Kinases / metabolism*
  • Kupffer Cells / drug effects
  • Kupffer Cells / metabolism*
  • Lipopolysaccharides / pharmacology*
  • Male
  • Mice
  • Mice, Inbred C57BL
  • NF-kappa B / metabolism*
  • RNA Interference
  • Toll-Like Receptors / metabolism*
  • Transcription, Genetic
  • Tumor Necrosis Factor-alpha / metabolism

Substances

  • Lipopolysaccharides
  • NF-kappa B
  • Toll-Like Receptors
  • Tumor Necrosis Factor-alpha
  • Interleukin-1 Receptor-Associated Kinases
  • Irak3 protein, mouse