Bond dissocation and conformational energetics of tetrasulfur: a quantum Monte Carlo study

J Phys Chem A. 2008 Mar 13;112(10):2088-92. doi: 10.1021/jp076376h. Epub 2008 Jan 25.

Abstract

Variational Monte Carlo (VMC) and fixed-node diffusion Monte Carlo (DMC) calculations are performed for S4. The effect of single- and multireference trial functions, as well as choice of orbitals, is investigated for its effect on the quality of the Monte Carlo estimates. Estimates of symmetric (two S2 molecules) and asymmetric (S atom and S3 molecule) bond dissociation are reported. The conformational change of S4 from C2v to D2h defines a double-well potential and is also estimated. Multireference DMC with natural orbitals (DMC/NO) estimates the energy of the conformational change as 1.20(20) kcal/mol; the dissociation of the long S-S single bond is estimated at 21.1(1.3) kcal/mol, and the asymmetric bond energy is estimated as 53.2(2.4) kcal/mol. An estimate of the total atomization energy using multireference DMC/NO gives a value of 219.5(2.2) kcal/mol. The relative quality of result and implications for simplified trial function design are discussed.