Genetic parameters for nuclear and nonnuclear inheritance in three synthetic lines of beef cattle differing in mature size

J Anim Sci. 1991 Dec;69(12):4745-53. doi: 10.2527/1991.69124745x.

Abstract

Genetic parameters for nuclear and cytoplasmic genetic effects were estimated from preweaning growth data collected on three synthetic lines of beef cattle differing in mature size. Lines of small-, medium-, and large-framed calves were represented in each of two research herds (Rhodes and McNay). Variance components were estimated separately by herd and size line for birth weight and 205-d weight (WW) by REML with an animal mode using an average of 847 and 427 calf records from Rhodes and McNay, respectively. Model 1 included effects of fixed year, sex of calf, age of dam, and random additive direct (a), additive maternal genetic (m), covariance (a,m), permanent environment affecting the dam, and residual error. Model 2 differed from Model 1 by including random cytoplasmic lineage effects and by ignoring permanent environmental effects. Model 1--direct (maternal) heritability estimates for birth weight at Rhodes were .62(.03) for small, .67(.06) for medium, and .30(.11) for large lines. Genetic correlations between direct and maternal effects for birth weight were .67, -.16, and .48 for the respective size groups. For WW at Rhodes, direct (maternal) heritability estimates were .30(.29), .30(.14), and .10(.16) for small, medium, and large lines, respectively, with genetic correlations of -.34 (small), -.12 (medium), and .17 (large). Heritability estimates at McNay were similar to those at Rhodes, except that maternal genetic heritabilities for WW were smaller (.10, small; .01, medium; .00, large). Model 2--estimates for nuclear genetic effects were consistent with the estimates from Model 1. Cytoplasmic variance accounted for 0 to 5% of the total random variance in birth weight. For WW, cytoplasmic variance was negligible at Rhodes and accounted for 4% of the total random variance in the large line at McNay, averaging less than the permanent environment. Results failed to indicate that cytoplasmic variance was important for preweaning performance.

MeSH terms

  • Animals
  • Birth Weight / genetics
  • Body Weight / genetics*
  • Cattle / genetics*
  • Cattle / growth & development
  • Female
  • Least-Squares Analysis
  • Linear Models
  • Male
  • Models, Biological
  • Models, Genetic
  • Phenotype
  • Weaning