Structural and electrostatic properties of ubiquitination and related pathways

Front Biosci. 2007 May 1:12:3419-30. doi: 10.2741/2323.

Abstract

Post-translational modification by ubiquitin and ubiquitin-like (UBL) proteins is a key mechanism for cellular control. The specificity of the enzymes of ubiquitination and their close paralogs is dependent on their molecular electrostatic potentials. For example, analysis of molecular electrostatic potentials and electrostatically key residues can account for the selectivity of different E1s (activating enzymes) and of different SUMO proteases. The molecular interactions of the ubiquitin conjugating enzymes, the ubiquitin family proteins (UFP) and UBL domains are discussed in detail. An interesting observation is that the Non Canonical Ubiquitin Conjugating Enzymes (NCUBEs) have electrostatic potentials that are more similar to the UBC9 orthologs, the SUMO conjugating enzymes, than they are to other ubiquitin conjugating enzymes. It had previously been suggested that UBC9 may select for SUMO based on its difference in electrostatic potential as compared to other E2s but the NCUBE exception suggests that this may not be the case. The web site http://www.ubiquitin-resource.org/ allows users to find the E2s most electrostatically similar to a query E2. Where possible, models have been made for all E2 domains in the SMART database (http://smart.embl-heidelberg.de/). A brief overview of molecular electrostatic potentials and their application to understanding protein function is also given.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Humans
  • Protein Conformation
  • Static Electricity*
  • Ubiquitin / metabolism*
  • Ubiquitin / physiology

Substances

  • Ubiquitin