Effects of Low Dissolved-Oxygen Concentrations on Poly-(3-Hydroxybutyrate-co-3-Hydroxyvalerate) Production by Alcaligenes eutrophus

Appl Environ Microbiol. 1997 Mar;63(3):827-33. doi: 10.1128/aem.63.3.827-833.1997.

Abstract

The bacterial copolyester poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) was produced with Alcaligenes eutrophus DSM 545 from glucose and sodium propionate in a fed-batch fermentation with both nitrogen limitation and low dissolved-oxygen concentrations. When the dissolved-oxygen content was kept between 1 and 4% of air saturation during the polymer accumulation phase, the yield of 3-hydroxybutyrate (3HB) monomer from glucose was not affected, but the propionate-to-3-hydroxyvalerate (3HV) monomer yield was two to three times (0.48 to 0.73 mol of 3HV mol of propionate consumed(sup-1)) that observed in a control experiment (0.25 mol mol(sup-1)), where the accumulation-phase dissolved-oxygen concentration was 50 to 70% of air saturation. The overall polymer productivity of the fermentation was somewhat decreased by low dissolved-oxygen contents, owing to a slower 3HB production rate. The effect of a low dissolved-oxygen concentration is probably attributable to a reduction of the oxygen-requiring decarbonylation of propionyl-coenzyme A (CoA) to acetyl-CoA.