Quantitative measurements of dielectric spectra with microdielectric fringe-effect sensors

Anal Chem. 2004 Jul 15;76(14):4143-9. doi: 10.1021/ac049838l.

Abstract

The parallel-plate method is a gold standard for measuring dielectric properties of materials. However, it requires sampling of the material under testing (MUT), which makes it less suitable for real time, dynamic, and in situ measurements. The alternative to the parallel-plate method is to use the microdielectric fringe-effect (FE) sensors, which can be placed inside the process or laboratory equipment to provide rapid, on-line, and noninvasive characterization of the dielectric properties. An additional potential advantage of the FE measurements is the ability to obtain spatially localized and interfacial measurements, which may be important in some applications. Unfortunately, interpretation of the FE sensor measurements is difficult because of the spatial nonuniformity of the electrical excitation field created by the FE sensor and the extraneous contributions from the sensor substrate and unknown stray elements. The objective of this study is to summarize the theoretical basis of the dielectric measurements using planar interdigitated sensors and to use it in the development of a new method for obtaining quantitative measurements with FE sensors. As the first step, the basic correlation between the impedance measurements obtained with the FE sensor and the dielectric properties of the MUT is elucidated. The theoretical results are then used to analyze the contribution of the sensor substrate and unknown stray components to the overall measurements. A novel calibration method to eliminate extraneous contributions is then proposed. The application example demonstrates the application of the developed method to the measurement of the dielectric permittivities of a polydispersed cis-polyisoprene samples. The results are compared with those obtained using the parallel-plate measurements and show excellent agreement. Experimental comparison with the alternative calibration methods is also performed, indicating significant improvement in accuracy of dielectric measurements over a broad range of frequencies.