Positional information by Rauber's sickle and a new look at the mechanisms of primitive streak initiation in avian blastoderms

J Morphol. 2003 Mar;255(3):315-27. doi: 10.1002/jmor.10065.

Abstract

The present experimental in vitro study suggests that a primitive streak (PS) in avian blastoderms is induced by diffusion of morphogenetic substances emanating from Rauber's sickle. Indeed, even without direct contact between a quail Rauber's sickle and the reacting upper layer (by interposition of a vitelline membrane), a PS can be induced in the isolated area centralis or antisickle region of unincubated chicken blastoderms. The so-formed PSs are localized below the vitelline membrane in the immediate neighborhood of the apposed Rauber's sickle material. This seems to indicate that Rauber's sickle organizes the formation of the avian PS according to the basic concept of "positional information." The morphogenetic substances seem to have an effect only on the formation of a PS. Each part of Rauber's sickle seems to have, point by point, the same thickening and PS-inducing effect on each corresponding part of the underlying upper layer (UL). By a mechanism of sliding over the basement membrane and fusion, this finally results in the formation of one single median PS. Our study shows that a PS can be induced in the total absence of hypoblast (sickle endoblast) or caudal marginal zone, by only the presence of Rauber's sickle material. In contrast, the differentiation of mesoblast into blood islands under the influence of Rauber's sickle and neural tissue development are impaired by the interposition of a vitelline membrane. The latter could be due to the absence of a normal interaction of Rauber's sickle-derived sickle endoblast with endophyll and/or upper layer and the absence of cranial migration of the mesoblast. Thus, earlier studies and the present study indicate the existence of a temporospatially bound cascade of gastrulation and neurulation phenomena and blood island formation in the avian blastoderm, starting from Rauber's sickle, the primary major organizer with inducing, inhibiting, and dominating potencies. The latter not only plays a role by secretion of signaling molecules, but also influences development by its cell lineages (junctional endoblast and sickle endoblast).

MeSH terms

  • Animals
  • Blastoderm / physiology*
  • Chick Embryo / physiology*
  • Chimera
  • Embryo, Nonmammalian / physiology
  • In Vitro Techniques
  • Quail / embryology*
  • Signal Transduction