Characterization of metabotropic glutamate receptors negatively linked to adenylyl cyclase in brain slices

Brain Res. 1993 Sep 17;622(1-2):132-8. doi: 10.1016/0006-8993(93)90811-z.

Abstract

We have characterized the pharmacological profile of activation of metabotropic glutamate receptors negatively linked to adenylyl cyclase (mGluR decreases cAMP) in brain slices. Among the putative mGluR agonists, (2S,1'R,2'R,3'R)-2-(2,3-dicarboxycyclopropyl)glycine (DCG-IV) and (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (ACPD), were the most potent inhibitors of forskolin-stimulated cAMP formation in hippocampal slices, followed by ibotenate, L-2-amino-3-phosphonopropionate (AP3), quisqualate, L-glutamate and beta-N-methylamino-L-alanine (BMAA). Inhibition of forskolin-stimulated cAMP formation by DL-2-amino-4-phosphonobutanoate (AP4) was biphasic, suggesting that the drug interacts with more than one mGluR decreases cAMP subtype. Both L-AP4 and L-serine-O-phosphate (a restricted analogue of AP4) were much more effective in inhibiting forskolin-stimulated cAMP formation than their D-isomers, indicating that interaction of these drugs with the mGluR decreases cAMP is stereoselective. Despite the fact that DCG-IV and ibotenate behave as NMDA receptor agonists, their effect was insensitive to MK-801. The regional pattern of expression of mGluR decreases cAMPS, as estimated by using 1S,3R-ACPD as an agonist, did not correlate with the steady-state levels of mGluR2 mRNA. Thus, 1S,3R-ACPD inhibited forskolin-stimulated cAMP in slices from hippocampus, cerebral cortex, corpus striatum, olfactory tubercle or hypothalamus, but not in slices from olfactory bulb or cerebellum; in contrast, mGluR2 mRNA levels were high in the olfactory bulb and very low in the corpus striatum. 1S,3R-ACPD also inhibited forskolin-stimulated cAMP formation in cortical membranes, excluding the involvement of trans-synaptic mechanisms in the activity of mGluR decreases cAMPS.(ABSTRACT TRUNCATED AT 250 WORDS)

MeSH terms

  • Adenylyl Cyclases / metabolism*
  • Animals
  • Brain / drug effects
  • Brain / enzymology
  • Brain / metabolism*
  • Colforsin / pharmacology
  • Cyclic AMP / biosynthesis*
  • In Vitro Techniques
  • Male
  • Membranes / metabolism
  • Nucleic Acid Hybridization
  • RNA, Messenger / analysis
  • Rats
  • Rats, Sprague-Dawley
  • Receptors, Metabotropic Glutamate / drug effects
  • Receptors, Metabotropic Glutamate / genetics
  • Receptors, Metabotropic Glutamate / metabolism*

Substances

  • RNA, Messenger
  • Receptors, Metabotropic Glutamate
  • Colforsin
  • Cyclic AMP
  • Adenylyl Cyclases