Analysing the Combined Effects of Radiotherapy and Chemokine Receptor 5 Antagonism: Complementary Approaches to Promote T Cell Function and Migration in Oesophageal Adenocarcinoma

Biomedicines. 2024 Apr 8;12(4):819. doi: 10.3390/biomedicines12040819.

Abstract

The presence of an immunosuppressive tumour microenvironment in oesophageal adenocarcinoma (OAC) is a major contributor to poor responses. Novel treatment strategies are required to supplement current regimens and improve patient survival. This study examined the immunomodulatory effects that radiation therapy and chemokine receptor antagonism impose on T cell phenotypes in OAC with a primary goal of identifying potential therapeutic targets to combine with radiation to improve anti-tumour responses. Compared with healthy controls, anti-tumour T cell function was impaired in OAC patients, demonstrated by lower IFN-γ production by CD4+ T helper cells and lower CD8+ T cell cytotoxic potential. Such diminished T cell effector functions were enhanced following treatment with clinically relevant doses of irradiation. Interestingly, CCR5+ T cells were significantly more abundant in OAC patient blood compared with healthy controls, and CCR5 surface expression by T cells was further enhanced by clinically relevant doses of irradiation. Moreover, irradiation enhanced T cell migration towards OAC patient-derived tumour-conditioned media (TCM). In vitro treatment with the CCR5 antagonist Maraviroc enhanced IFN-γ production by CD4+ T cells and increased the migration of irradiated CD8+ T cells towards irradiated TCM, suggesting its synergistic therapeutic potential in combination with irradiation. Overall, this study highlights the immunostimulatory properties of radiation in promoting anti-tumour T cell responses in OAC and increasing T cell migration towards chemotactic cues in the tumour. Importantly, the CCR5 antagonist Maraviroc holds promise to be repurposed in combination with radiotherapy to promote anti-tumour T cell responses in OAC.

Keywords: CCR5; Maraviroc; T cell recruitment; cancer immune suppression; chemokines; oesophageal adenocarcinoma.