Human Dermal Decellularized ECM Hydrogels as Scaffolds for 3D In Vitro Skin Aging Models

Int J Mol Sci. 2024 Apr 4;25(7):4020. doi: 10.3390/ijms25074020.

Abstract

Biomaterials play an important role in the development of advancing three dimensional (3D) in vitro skin models, providing valuable insights for drug testing and tissue-specific modeling. Commercial materials, such as collagen, fibrin or alginate, have been widely used in skin modeling. However, they do not adequately represent the molecular complexity of skin components. On this regard, the development of novel biomaterials that represent the complexity of tissues is becoming more important in the design of advanced models. In this study, we have obtained aged human decellularized dermal extracellular matrix (dECM) hydrogels extracted from cadaveric human skin and demonstrated their potential as scaffold for advanced skin models. These dECM hydrogels effectively reproduce the complex fibrillar structure of other common scaffolds, exhibiting similar mechanical properties, while preserving the molecular composition of the native dermis. It is worth noting that fibroblasts embedded within human dECM hydrogels exhibit a behavior more representative of natural skin compared to commercial collagen hydrogels, where uncontrolled cell proliferation leads to material shrinkage. The described human dECM hydrogel is able to be used as scaffold for dermal fibroblasts in a skin aging-on-a-chip model. These results demonstrate that dECM hydrogels preserve essential components of the native human dermis making them a suitable option for the development of 3D skin aging models that accurately represent the cellular microenvironment, improving existing in vitro skin models and allowing for more reliable results in dermatopathological studies.

Keywords: biomaterials; decellularization; human dermal extracellular matrix hydrogels; microfluidics; skin aging-on-a-chip.

MeSH terms

  • Aged
  • Biocompatible Materials / pharmacology
  • Collagen
  • Decellularized Extracellular Matrix*
  • Humans
  • Hydrogels
  • Skin Aging*

Substances

  • Decellularized Extracellular Matrix
  • Biocompatible Materials
  • Hydrogels
  • Collagen