Axial Compression Property Test of GFRP Tube-Confined Coal Gangue Steel Fiber Short Concrete Column

Polymers (Basel). 2022 Oct 26;14(21):4528. doi: 10.3390/polym14214528.

Abstract

In order to study the axial compression property of a GFRP (glass fiber-reinforced polymer) tube-confined coal gangue steel fiber short concrete column, a test was carried out. The whole process of deformation and failure of the specimen under axial compression load was observed, and the whole process of the stress-strain curve of the specimen was obtained. The results show that the thickness of the GFRP tube has the most significant effect on the mechanical properties. The thickness of the 7 mm tube is 4.3 times the axial ultimate stress and 21.5 times the ultimate strain of the unconstrained short column. Under a certain volume fraction, the ultimate axial strain of the wave fiber is 10.1% higher than that of the hook fiber short column, and the ductility coefficient is 9.6% higher. The fiber volume fraction significantly increases the strain of the short column, and the 3% fiber content is 50.1% higher than that of the non-fiber short column. Finally, three classical strength models of confined concrete were selected for comparative calculation, and a new stress correction model was proposed.

Keywords: GFRP tube; axial compression test; coal gangue concrete; steel fiber.