Numerical Investigations of Urban Pollutant Dispersion and Building Intake Fraction with Various 3D Building Configurations and Tree Plantings

Int J Environ Res Public Health. 2022 Mar 16;19(6):3524. doi: 10.3390/ijerph19063524.

Abstract

Rapid urbanisation and rising vehicular emissions aggravate urban air pollution. Outdoor pollutants could diffuse indoors through infiltration or ventilation, leading to residents’ exposure. This study performed CFD simulations with a standard k-ε model to investigate the impacts of building configurations and tree planting on airflows, pollutant (CO) dispersion, and personal exposure in 3D urban micro-environments (aspect ratio = H/W = 30 m, building packing density λp = λf = 0.25) under neutral atmospheric conditions. The numerical models are well validated by wind tunnel data. The impacts of open space, central high-rise building and tree planting (leaf area density LAD= 1 m2/m3) with four approaching wind directions (parallel 0° and non-parallel 15°, 30°, 45°) are explored. Building intake fraction <P_IF> is adopted for exposure assessment. The change rates of <P_IF> demonstrate the impacts of different urban layouts on the traffic exhaust exposure on residents. The results show that open space increases the spatially-averaged velocity ratio (VR) for the whole area by 0.40−2.27%. Central high-rise building (2H) can increase wind speed by 4.73−23.36% and decrease the CO concentration by 4.39−23.00%. Central open space and high-rise building decrease <P_IF> under all four wind directions, by 6.56−16.08% and 9.59−24.70%, respectively. Tree planting reduces wind speed in all cases, raising <P_IF> by 14.89−50.19%. This work could provide helpful scientific references for public health and sustainable urban planning.

Keywords: CFD simulation; open space; personal intake fraction; pollutant dispersion; urban tree planting; ventilation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Air Pollutants* / analysis
  • Air Pollution* / analysis
  • Cities
  • Environmental Monitoring / methods
  • Environmental Pollutants*
  • Models, Theoretical
  • Trees
  • Vehicle Emissions / analysis

Substances

  • Air Pollutants
  • Environmental Pollutants
  • Vehicle Emissions