Mechanical Performance of Single-Graded Copolymer-Modified Pervious Concrete in a Corrosive Environment

Materials (Basel). 2021 Nov 29;14(23):7304. doi: 10.3390/ma14237304.

Abstract

Polymer-modified cement has found numerous applications due to its excellent tensile strength. When cement was modified with a single polymer, its tensile strength and performance marginally increased. However, when a small amount of the flexible polymer latex was added to cement, the mechanical performance of cement considerably improved. In this study, single-graded copolymer-modified pervious concrete was prepared by mixing styrene-butadiene rubber (SBR) with different acrylate polymers, and its mechanical performance and durability were systematically studied through mechanical tests and theoretical analyses. The main findings are as follows: (1) When a waterborne emulsion was added, the freeze resistance of cement concrete increased, and its mass loss rate decreased. Cement concrete with two latexes had higher sulphate corrosion resistance and substantially lower dry shrinkage strain than ordinary cement concrete. (2) Through scanning electron microscopy, the microstructural changes in the cement binder, ordinary polymer-modified concrete, and the copolymer-modified cement concrete used in this study were observed, and the findings were compared with those reported in the literature. (3) Single-graded copolymer-modified pervious concrete exhibited excellent shrinkage performance. This study showed that single-graded copolymer-modified pervious concrete satisfied the performance requirements for use as a paving material for special cases.

Keywords: copolymer-modified cement concrete; durability; mechanical performance; microstructure; polymer.