Synthesis and Characterization of Novel Fe-Mn-Ce Ternary Oxide⁻Biochar Composites as Highly Efficient Adsorbents for As(III) Removal from Aqueous Solutions

Materials (Basel). 2018 Dec 3;11(12):2445. doi: 10.3390/ma11122445.

Abstract

The widespread pollution of water bodies with arsenic (As) necessitates the development of efficient decontamination techniques. To address this issue, we herein prepare Fe-Mn-Ce ternary oxide-biochar composites (FMCBCs) using impregnation/sintering methods and examined their physicochemical properties, morphologies, and As(III) removal performances. The specific surface area of FMCBCs increased with increasing Ce content and enhanced the quantity of surface functional groups (⁻OH, ⁻COOH). The adsorption of As(III) on FMCBCs was well represented by pseudo-second-order kinetics, and the As(III) adsorption capacity of the best-performing FMCBCs (8.47 mg g-1 for FMCBC₃) exceeded that of BC by a factor of 2.9. At pH = 3, the amount of adsorption of As(III) by FMCBCs reached a maximum, and the increased ionic strength could enhance adsorption capacity of FMCBCs. Moreover, an As(III) removal efficiency of ~99% was observed for FMCBC₃ at a dosage of 8 g L-1, which highlighted its great potential as an absorbent for As(III) removal from contaminated water.

Keywords: Fe-Mn-Ce ternary oxide–biochar composite; adsorption; arsenic; characterization.