Design and Performance Testing of a Novel Three-Dimensional Elliptical Vibration Turning Device

Micromachines (Basel). 2017 Oct 12;8(10):305. doi: 10.3390/mi8100305.

Abstract

A novel three-dimensional (3D) elliptical vibration turning device which is on the basis of the leaf-spring-flexure-hinges-based (LSFH-based) double parallel four-bar linkages (DPFLMs) has been proposed. In order to evaluate the performance of the developed 3D elliptical vibration cutting generator (EVCG), the off-line tests were carried out to investigate the stroke, dynamic performance, resolution, tracking accuracy and hysteresis along the three vibration axes. Experimental results indicate that the maximum stroke of three vibration axes can reach up to 26 μm. The working bandwidth can reach up to 1889 Hz. The resolution and hysteresis tests show that the developed 3D EVCG has a good tracking accuracy, relative high resolution and low hysteresis, which is appropriate for micro/nano machining. Kinematical modeling is carried out to investigate the tool vibration trajectory. Experimental results shown that the simulation results agree well with the experimental one, which indicate that the developed 3D EVCG can be used as an option for micro/nano machining.

Keywords: compliant mechanism; elliptical vibration cutting; flexure hinge; three-dimensional elliptical trajectory.