Compound K Induces Endoplasmic Reticulum Stress and Apoptosis in Human Liver Cancer Cells by Regulating STAT3

Molecules. 2018 Jun 19;23(6):1482. doi: 10.3390/molecules23061482.

Abstract

The ginsenoside compound K (20-O-β-d-glucopyranosyl-20(S)-protopanaxadiol; CK) is an intestinal bacterial metabolite of ginseng protopanaxadiol saponin that has been reported to induce apoptosis in many cancer cells; however, the precise mechanisms of its activity in human hepatocellular carcinoma (HCC) cells remain unclear. Herein, we demonstrated that CK inhibited the growth and colony formation of HepG2 and SMMC-7721 cells, phenotypes that were mediated by inducing apoptosis. Meanwhile, CK showed lower toxicity in normal hepatoma cells. After treating HepG2 and SMMC-7721 cells with CK, p-STAT3 levels decreased, the three branches of the unfolded protein response were activated, and levels of endoplasmic reticulum stress (ERS)-related proteins were increased. We also revealed that CK decreased the DNA-binding capacity of STAT3. Moreover, silencing STAT3 with CRISPR/Cas9 technology enhanced CK-induced ERS and apoptosis. Finally, we showed that CK inhibited the growth of liver cancer xenografts with little toxicity. Mice bearing human HCC xenografts that were treated with CK showed increased GRP78 expression and decreased p-STAT3 levels. Taken together, these data showed that CK induced ERS and apoptosis by inhibiting p-STAT3 in human liver cancer cells; thus, CK might be a potential therapeutic candidate for human HCC.

Keywords: CK; ERS; STAT3; apoptosis; ginsenoside; hepatoma.

MeSH terms

  • Animals
  • Apoptosis / drug effects*
  • Apoptosis / genetics
  • Carcinoma, Hepatocellular / drug therapy*
  • Carcinoma, Hepatocellular / genetics
  • Carcinoma, Hepatocellular / metabolism
  • Carcinoma, Hepatocellular / pathology
  • Endoplasmic Reticulum Chaperone BiP
  • Endoplasmic Reticulum Stress / drug effects*
  • Endoplasmic Reticulum Stress / genetics
  • Female
  • Ginsenosides / chemistry
  • Ginsenosides / pharmacology*
  • Hep G2 Cells
  • Humans
  • Liver Neoplasms / drug therapy*
  • Liver Neoplasms / genetics
  • Liver Neoplasms / metabolism
  • Liver Neoplasms / pathology
  • Mice
  • Mice, Inbred BALB C
  • Mice, Nude
  • Neoplasm Proteins / genetics
  • Neoplasm Proteins / metabolism*
  • STAT3 Transcription Factor / genetics
  • STAT3 Transcription Factor / metabolism*
  • Xenograft Model Antitumor Assays

Substances

  • Endoplasmic Reticulum Chaperone BiP
  • Ginsenosides
  • HSPA5 protein, human
  • Hspa5 protein, mouse
  • Neoplasm Proteins
  • STAT3 Transcription Factor
  • STAT3 protein, human