HSPC117 is regulated by epigenetic modification and is involved in the migration of JEG-3 cells

Int J Mol Sci. 2014 Jun 17;15(6):10936-49. doi: 10.3390/ijms150610936.

Abstract

The human hematopoietic stem/progenitor cell 117 (HSPC117) protein is an essential component of protein complexes and has been identified to be involved in many important functions. However, how this gene expression is regulated and whether the HSPC117 gene affects cell migration is still unknown. The aim of this study was to identify whether HSPC117 mRNA expression is regulated by epigenetic modification and whether HSPC117 expression level affects the expression of matrix metalloproteinase 2 (MMP 2), matrix metalloproteinase 14 (MMP 14), and tissue inhibitor of metalloproteinases 2 (TIMP 2), and further affects human placenta choriocarcinoma cell (JEG-3) migration speed. In our epigenetic modification experiment, JEG-3 cells were cultured in medium with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (5-aza-dC), the histone deacetylase (HDAC) inhibitor trichostatin A (TSA), or both inhibitors. Then, the HSPC117 mRNA and protein expressions were assessed using real-time quantitative PCR (qPCR) and Western blot assay. The results showed that, compared to the control, HSPC117 mRNA expression was increased by TSA or 5-aza-dC. The highest HSPC117 expression level was found after treatment with both 5-aza-dC and TSA. Further, in order to investigate the effect of HSPC117 on MMP 2, MMP 14, and TIMP 2 mRNA expressions, pEGFP-C1-HSPC117 plasmids were transfected into JEG-3 cells to improve the expression of HSPC117 in the JEG-3 cells. Then, the mRNA expression levels of MMP 2, MMP 14, TIMP 2, and the speed of cell migration were assessed using the scratch wound assay. The results showed that over-expression of HSPC117 mRNA reduced MMP 2 and MMP 14 mRNA expression, while TIMP 2 mRNA expression was up-regulated. The scratch wound assay showed that the migration speed of JEG-3 cells was slower than the non-transfected group and the C1-transfected group. All of these results indicate that HSPC117 mRNA expression is regulated by epigenetic modification; over-expression of HSPC117 decreases MMP 2 and MMP 14 transcription, reduces cell migration speed, and increases TIMP 2 transcription.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Azacitidine / analogs & derivatives
  • Azacitidine / pharmacology
  • Cell Line, Tumor
  • Cell Movement / drug effects
  • Decitabine
  • Epigenesis, Genetic* / drug effects
  • Histones / metabolism
  • Humans
  • Hydroxamic Acids / pharmacology
  • Matrix Metalloproteinase 2 / genetics
  • Matrix Metalloproteinase 2 / metabolism
  • Matrix Metalloproteinase 9 / genetics
  • Matrix Metalloproteinase 9 / metabolism
  • Methylation / drug effects
  • Proteins / genetics
  • Proteins / metabolism*
  • RNA, Messenger / metabolism
  • Tissue Inhibitor of Metalloproteinase-1 / genetics
  • Tissue Inhibitor of Metalloproteinase-1 / metabolism

Substances

  • Histones
  • Hydroxamic Acids
  • Proteins
  • RNA, Messenger
  • RTCB protein, human
  • Tissue Inhibitor of Metalloproteinase-1
  • trichostatin A
  • Decitabine
  • Matrix Metalloproteinase 2
  • Matrix Metalloproteinase 9
  • Azacitidine