Display Settings:

Format

Send to:

Choose Destination

See 1 citation found by title matching your search:

See comment in PubMed Commons below
Brain Res. 2011 Feb 28;1376:88-93. doi: 10.1016/j.brainres.2010.12.052. Epub 2010 Dec 20.

tPA contributes to impairment of ATP and Ca sensitive K channel mediated cerebrovasodilation after hypoxia/ischemia through upregulation of ERK MAPK.

Author information

  • 1Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA l9l04, USA. armsteaw@uphs.upenn.edu

Abstract

The sole FDA approved treatment for acute stroke is tissue type plasminogen activator (tPA). However, tPA potentiates impairment of pial artery dilation in response to hypotension after hypoxia/ischemia (H/I) in pigs. ATP and Ca sensitive K channels (Katp and Kca) are important regulators of cerebrovascular tone and mediate cerebrovasodilation in response to hypotension. Mitogen activated protein kinase (MAPK), a family of at least 3 kinases, ERK, p38 and JNK, is upregulated after H/I, with the ERK isoform contributing to vasodilator impairment. This study examined the effect of H/I on Katp and Kca induced pial artery dilation and the roles of tPA and ERK during/after injury in piglets equipped with a closed cranial window. H/I blunted vasodilation induced by the Katp agonists cromakalim, calcitonin gene related peptide (CGRP) and the Kca agonist NS 1619; the effect of each was exacerbated by tPA. Pre- or post-injury treatment with EEIIMD, a hexapeptide derived from plasminogen activator-1, and ERK antagonist U 0126 prevented Katp and Kca channel agonist induced vasodilator impairment while the inactive analogue EEIIMR had no effect. ERK was upregulated after H/I, which was potentiated by tPA. These data indicate that H/I impairs K channel mediated cerebrovasodilation. tPA augments loss of K channel function after injury by upregulating ERK. These data suggest that thrombolytic therapy for treatment of CNS ischemic disorders can dysregulate cerebrohemodynamics by impairing cation-mediated control of cerebrovascular tone.

Copyright © 2010 Elsevier B.V. All rights reserved.

PMID:
21182829
[PubMed - indexed for MEDLINE]
PMCID:
PMC3038175
Free PMC Article

Images from this publication.See all images (3)Free text

Figure 1
Figure 2
Figure 3
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk