Format

Send to

Choose Destination
See comment in PubMed Commons below
J Cell Biol. 2000 Dec 11;151(6):1269-80.

Spatial sensing in fibroblasts mediated by 3' phosphoinositides.

Author information

  • 1Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA.

Abstract

The directed movement of fibroblasts towards locally released platelet-derived growth factor (PDGF) is a critical event in wound healing. Although recent studies have implicated polarized activation of phosphoinositide (PI) 3-kinase in G protein-mediated chemotaxis, the role of 3' PI lipids in tyrosine kinase-triggered chemotaxis is not well understood. Using evanescent wave microscopy and green fluorescent protein-tagged Akt pleckstrin homology domain (GFP-AktPH) as a molecular sensor, we show that application of a shallow PDGF gradient triggers a markedly steeper gradient in 3' PI lipids in the adhesion zone of fibroblasts. Polar GFP-AktPH gradients, as well as a new type of radial gradient, were measured from front to rear and from the periphery to the center of the adhesion zone, respectively. A strong spatial correlation between polarized 3' PI production and rapid membrane spreading implicates 3' PI lipids as a direct mediator of polarized migration. Analysis of the temporal changes of 3' PI gradients in the adhesion zone revealed a fast diffusion coefficient (0.5 microm(2)/s) and short lifetime of 3' PIs of <1 min. Together, this study suggests that the tyrosine kinase-coupled directional movement of fibroblasts and their radial membrane activity are controlled by local generation and rapid degradation of 3' PI second messengers.

PMID:
11121441
PMCID:
PMC2190602
[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk