Display Settings:

Format

Send to:

Choose Destination
  • The following term was ignored: -
  • See the search details.
See comment in PubMed Commons below
Med Lav. 1999 Jan-Feb;90(1):10-52.

[Chemical and physical characteristics and toxicology of man-made mineral fibers].

[Article in Italian]

Author information

  • 1Dipartimento di Medicina del Lavoro, Universit√† degli Studi di Milano.

Abstract

The evidence for the adverse health effects following exposure to asbestos (i.e. fibrogenic and carcinogenic effect) has prompted widespread removal of asbestos-containing materials and led to banning of asbestos internationally (in Italy, DPR 257/1992), resulting in the increased use of substitutes composed of both naturally occurring and synthetic materials, including man made mineral fibres (MMMFs) and man made organic fibres (MMOF). MMMFs represent a family of synthetic, inorganic vitreous substances derived primarily from glass, rock, slag, or clay. MMMFs are further divided into two categories: 1) man made vitreous fibres (MMVFs), further divided as follows: a) fibrous glass, including mainly continuous filament, special purpose fibres; and microfibres. The materials are typically composed of oxides of silicon, calcium, sodium, potassium, aluminum, and boron. b) Mineral wool, including glass wool, rock wool (derived from magma rock) and slag wool (made from molten slag produced in metallurgical processes such as the production of iron, steel, or copper). The main components of rock wool and slag wool are oxides of silicon, calcium, magnesium, aluminum, and iron. 2) Refractory/ceramic fibres, amorphous or partially crystalline materials made from kaolin clay or oxides of aluminum, silicon or other metal oxides (i.e. oxides of zirconium and yttrium). Less commonly, refractory fibres are also made from non-oxide refractory materials such as silicon carbide, silicon nitride, or boron nitride. Industrial production of MMVFs began in the second half of the 19th century, while ceramic fibres production began more recently, in the early 1970s. Major uses of MMMFs include thermal, acoustic and aerospace insulation, fire proofing, reinforcing material in plastics, cement and textile, optic fibres, air and liquid filtration, friction products, refractory coatings. Serious questions have been raised about health implications of MMMFs. Suspicion about the possible occurrence of adverse effects following exposure to MMMFs arises mainly from some similarities of MMMFs with asbestos (fibrous aspects, inhalability, chemical composition, free radical formation). The fibre characteristics that have been identified as crucial in influencing the pathogenesis of fibre-related adverse respiratory effects can be mainly divided into two groups: fibre dimension, and chemical composition and structure. Fibre dimension plays a determining role in conditioning penetration in the lung. In a broad sense, the term "respirable" means "capable of being carried by breath into the respiratory system". For regulatory purposes, "respirable fibres" (i.e. RFP) are defined in most countries following WHO criteria: length > 5 microns, diameter < 3 microns, length/diameter > 3. MMMFs are generally produced as fibres of diameter higher than asbestos, and too large in diameter to be respirable. Moreover, due to the production process, they are structurally amorphous. Since MMMFs have no crystalline domains, they also have no clearly defined structural faults and they fracture transversely, and randomly. Fragments that are too large to be taken up by macrophages can be resolved in the lung by a leaching--or dissolution--process which leads to a progressive reduction of particle length. In contrast, when abraded, asbestos tends to split longitudinally into new, fine, straight fibres: these fibrils are of much smaller diameter, more respirable, and consequently more hazardous than parent fibres. Fibre chemical composition plays a determining role in conditioning the higher or lower biological activity, durability, biopersistence, and biodegradability. The term "biological activity" means reactivity or ability to interact (possibly due to formation of active oxygen species, identified as a crucial step in the mechanism of action) with biological structures and tissues. Fibre "durability" is strictly related to its solubility. It can be defined as the ability to resist

PMID:
10339953
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk