Format
Items per page
Sort by

Send to:

Choose Destination

Search results

Items: 1 to 20 of 58

1.

Multiple actions of a D₃ dopamine receptor agonist, PD128907, on GABAergic inhibitory transmission between medium spiny neurons in mouse nucleus accumbens shell.

Kohnomi S, Konishi S.

Neurosci Lett. 2015 Jul 23;600:17-21. doi: 10.1016/j.neulet.2015.05.056. Epub 2015 May 29.

PMID:
26033184
2.

Impramine, fluoxetine and clozapine differently affected reactivity to positive and negative stimuli in a model of motivational anhedonia in rats.

Scheggi S, Pelliccia T, Ferrari A, De Montis MG, Gambarana C.

Neuroscience. 2015 Apr 16;291:189-202. doi: 10.1016/j.neuroscience.2015.02.006. Epub 2015 Feb 14.

PMID:
25686523
3.

Reduced activation in the ventral striatum during probabilistic decision-making in patients in an at-risk mental state.

Rausch F, Mier D, Eifler S, Fenske S, Schirmbeck F, Englisch S, Schilling C, Meyer-Lindenberg A, Kirsch P, Zink M.

J Psychiatry Neurosci. 2015 May;40(3):163-73.

4.

Elevated plasma orexin A levels in a subgroup of patients with schizophrenia associated with fewer negative and disorganized symptoms.

Chien YL, Liu CM, Shan JC, Lee HJ, Hsieh MH, Hwu HG, Chiou LC.

Psychoneuroendocrinology. 2015 Mar;53:1-9. doi: 10.1016/j.psyneuen.2014.12.012. Epub 2014 Dec 20.

PMID:
25560205
5.

Olanzapine antipsychotic treatment of adolescent rats causes long term changes in glutamate and GABA levels in the nucleus accumbens.

Xu S, Gullapalli RP, Frost DO.

Schizophr Res. 2015 Feb;161(2-3):452-7. doi: 10.1016/j.schres.2014.10.034. Epub 2014 Dec 5.

6.

Negative symptoms of schizophrenia: clinical characteristics, pathophysiological substrates, experimental models and prospects for improved treatment.

Millan MJ, Fone K, Steckler T, Horan WP.

Eur Neuropsychopharmacol. 2014 May;24(5):645-92. doi: 10.1016/j.euroneuro.2014.03.008. Epub 2014 Apr 4.

7.

Schizophrenia and co-occurring substance use disorder: reward, olfaction and clozapine.

Mesholam-Gately RI, Gibson LE, Seidman LJ, Green AI.

Schizophr Res. 2014 May;155(1-3):45-51. doi: 10.1016/j.schres.2014.03.002. Epub 2014 Mar 29.

PMID:
24685823
8.

Antipsychotic dose modulates behavioral and neural responses to feedback during reinforcement learning in schizophrenia.

Insel C, Reinen J, Weber J, Wager TD, Jarskog LF, Shohamy D, Smith EE.

Cogn Affect Behav Neurosci. 2014 Mar;14(1):189-201. doi: 10.3758/s13415-014-0261-3.

PMID:
24557585
9.

Cannabinoids and schizophrenia: therapeutic prospects.

Robson PJ, Guy GW, Di Marzo V.

Curr Pharm Des. 2014;20(13):2194-204. Review.

PMID:
23829368
10.

Methamphetamine-induced disruption of frontostriatal reward learning signals: relation to psychotic symptoms.

Bernacer J, Corlett PR, Ramachandra P, McFarlane B, Turner DC, Clark L, Robbins TW, Fletcher PC, Murray GK.

Am J Psychiatry. 2013 Nov;170(11):1326-34. doi: 10.1176/appi.ajp.2013.12070978.

PMID:
23732871
11.

A brief history of oxytocin and its role in modulating psychostimulant effects.

Carson DS, Guastella AJ, Taylor ER, McGregor IS.

J Psychopharmacol. 2013 Mar;27(3):231-47. doi: 10.1177/0269881112473788. Epub 2013 Jan 23. Review.

PMID:
23348754
12.

Cigarette smoking modulates medication-associated deficits in a monetary reward task in patients with schizophrenia.

Lernbass B, Grön G, Wolf ND, Abler B.

Eur Arch Psychiatry Clin Neurosci. 2013 Sep;263(6):509-17. doi: 10.1007/s00406-012-0370-3. Epub 2012 Sep 26.

PMID:
23010839
13.

Neuroanatomical substrates of the disruptive effect of olanzapine on rat maternal behavior as revealed by c-Fos immunoreactivity.

Zhao C, Li M.

Pharmacol Biochem Behav. 2012 Dec;103(2):174-80. doi: 10.1016/j.pbb.2012.08.021. Epub 2012 Aug 31.

14.

Prior haloperidol, but not olanzapine, exposure augments the pursuit of reward cues: implications for substance abuse in schizophrenia.

Bédard AM, Maheux J, Lévesque D, Samaha AN.

Schizophr Bull. 2013 May;39(3):692-702. doi: 10.1093/schbul/sbs077. Epub 2012 Aug 27.

15.

Neurobiological correlates of delusion: beyond the salience attribution hypothesis.

Pankow A, Knobel A, Voss M, Heinz A.

Neuropsychobiology. 2012;66(1):33-43. doi: 10.1159/000337132. Epub 2012 Jul 13. Review.

PMID:
22797275
16.

Dopamine-dependent architecture of cortico-subcortical network connectivity.

Cole DM, Oei NY, Soeter RP, Both S, van Gerven JM, Rombouts SA, Beckmann CF.

Cereb Cortex. 2013 Jul;23(7):1509-16. doi: 10.1093/cercor/bhs136. Epub 2012 May 29.

17.

Pavlovian reward prediction and receipt in schizophrenia: relationship to anhedonia.

Dowd EC, Barch DM.

PLoS One. 2012;7(5):e35622. doi: 10.1371/journal.pone.0035622. Epub 2012 May 4.

18.

Antipsychotic-associated mental side effects and their relationship to dopamine D2 receptor occupancy in striatal subdivisions: a high-resolution PET study with [11C]raclopride.

Kim JH, Son YD, Kim HK, Lee SY, Cho SE, Kim YB, Cho ZH.

J Clin Psychopharmacol. 2011 Aug;31(4):507-11. doi: 10.1097/JCP.0b013e318222353a.

PMID:
21694619
19.

Continuous, but not intermittent, antipsychotic drug delivery intensifies the pursuit of reward cues.

Bédard AM, Maheux J, Lévesque D, Samaha AN.

Neuropsychopharmacology. 2011 May;36(6):1248-59. doi: 10.1038/npp.2011.10. Epub 2011 Feb 16.

20.

Acute quetiapine dose-dependently exacerbates anhedonia induced by withdrawal from escalating doses of d-amphetamine.

Zhornitsky S, Potvin S, Stip E, Rompré PP.

Eur Neuropsychopharmacol. 2010 Oct;20(10):695-703. doi: 10.1016/j.euroneuro.2010.04.011. Epub 2010 Jun 3.

PMID:
20605419
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Loading ...
Write to the Help Desk