Format
Items per page
Sort by

Send to:

Choose Destination

Search results

Items: 1 to 20 of 27

1.
3.

Hydrogen-rich saline injection into the subarachnoid cavity within 2 weeks promotes recovery after acute spinal cord injury.

Wang JL, Zhang QS, Zhu KD, Sun JF, Zhang ZP, Sun JW, Zhang KX.

Neural Regen Res. 2015 Jun;10(6):958-64. doi: 10.4103/1673-5374.158361.

4.

Nonlinear optical response of cavity optomechanical system with second-order coupling.

Wang C, Chen HJ, Zhu KD.

Appl Opt. 2015 May 20;54(15):4623-8. doi: 10.1364/AO.54.004623.

PMID:
26192494
5.

Sensitive detection of Majorana fermions based on a hybrid spin-microcantilever via enhanced spin resonance spectrum.

Wu WH, Zhu KD.

Nanotechnology. 2015 May 15;26(19):195501. doi: 10.1088/0957-4484/26/19/195501. Epub 2015 Apr 21.

PMID:
25895653
6.

Sleep-dependent neuroplastic changes during auditory perceptual learning.

Alain C, Zhu KD, He Y, Ross B.

Neurobiol Learn Mem. 2015 Feb;118:133-42. doi: 10.1016/j.nlm.2014.12.001. Epub 2014 Dec 6.

PMID:
25490057
7.

Hybrid spin-microcantilever sensor for environmental, chemical, and biological detection.

Wu WH, Zhu KD.

Nanotechnology. 2015 Jan 9;26(1):015501. doi: 10.1088/0957-4484/26/1/015501. Epub 2014 Dec 8.

PMID:
25483887
8.

Graphene-based nanoresonator with applications in optical transistor and mass sensing.

Chen HJ, Zhu KD.

Sensors (Basel). 2014 Sep 9;14(9):16740-53. doi: 10.3390/s140916740.

9.

Ultrasensitive nanomechanical mass sensor using hybrid opto-electromechanical systems.

Jiang C, Cui Y, Zhu KD.

Opt Express. 2014 Jun 2;22(11):13773-83. doi: 10.1364/OE.22.013773.

PMID:
24921569
10.

Nonlinear optomechanical detection for Majorana fermions via a hybrid nanomechanical system.

Chen HJ, Zhu KD.

Nanoscale Res Lett. 2014 Apr 5;9(1):166. doi: 10.1186/1556-276X-9-166.

11.

Propagator for the Fokker-Planck equation with an arbitrary diffusion coefficient.

Lee C, Zhu KD, Chen JG.

Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Nov;88(5):054103. Epub 2013 Nov 20.

PMID:
24329387
12.

Nucleonic-resolution optical mass sensor based on a graphene nanoribbon quantum dot.

Bin W, Zhu KD.

Appl Opt. 2013 Aug 10;52(23):5816-21. doi: 10.1364/AO.52.005816.

PMID:
23938436
13.

Spin-based optomechanics with carbon nanotubes.

Li JJ, Zhu KD.

Sci Rep. 2012;2:903. doi: 10.1038/srep00903. Epub 2012 Nov 29.

14.

Tunable optical Kerr effects of DNAs coupled to quantum dots.

Li Y, Zhu KD.

Nanoscale Res Lett. 2012 Nov 29;7(1):660. doi: 10.1186/1556-276X-7-660.

15.

Optical determination of vacuum Rabi splitting in a semiconductor quantum dot induced by a metal nanoparticle.

He Y, Jiang C, Chen B, Li JJ, Zhu KD.

Opt Lett. 2012 Jul 15;37(14):2943-5. doi: 10.1364/OL.37.002943.

PMID:
22825186
16.

Tunable slow and fast light device based on a carbon nanotube resonator.

Li JJ, Zhu KD.

Opt Express. 2012 Mar 12;20(6):5840-8. doi: 10.1364/OE.20.005840.

PMID:
22418461
17.

Coherent optical spectroscopy in a biological semiconductor quantum dot-DNA hybrid system.

Li JJ, Zhu KD.

Nanoscale Res Lett. 2012 Feb 16;7:133. doi: 10.1186/1556-276X-7-133.

18.

Strong coupling among semiconductor quantum dots induced by a metal nanoparticle.

He Y, Zhu KD.

Nanoscale Res Lett. 2012 Feb 1;7:95. doi: 10.1186/1556-276X-7-95.

19.

Mass spectrometry based on a coupled Cooper-pair box and nanomechanical resonator system.

Jiang C, Chen B, Li JJ, Zhu KD.

Nanoscale Res Lett. 2011 Oct 31;6:570. doi: 10.1186/1556-276X-6-570.

20.

A quantum optical transistor with a single quantum dot in a photonic crystal nanocavity.

Li JJ, Zhu KD.

Nanotechnology. 2011 Feb 4;22(5):055202. doi: 10.1088/0957-4484/22/5/055202. Epub 2010 Dec 22.

PMID:
21178232
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk