Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 102

1.

Predicting chemically-induced skin reactions. Part I: QSAR models of skin sensitization and their application to identify potentially hazardous compounds.

Alves VM, Muratov E, Fourches D, Strickland J, Kleinstreuer N, Andrade CH, Tropsha A.

Toxicol Appl Pharmacol. 2015 Apr 15;284(2):262-72. doi: 10.1016/j.taap.2014.12.014. Epub 2015 Jan 3.

PMID:
25560674
2.

Predicting chemically-induced skin reactions. Part II: QSAR models of skin permeability and the relationships between skin permeability and skin sensitization.

Alves VM, Muratov E, Fourches D, Strickland J, Kleinstreuer N, Andrade CH, Tropsha A.

Toxicol Appl Pharmacol. 2015 Apr 15;284(2):273-80. doi: 10.1016/j.taap.2014.12.013. Epub 2015 Jan 3.

PMID:
25560673
3.

Target-specific native/decoy pose classifier improves the accuracy of ligand ranking in the CSAR 2013 benchmark.

Fourches D, Politi R, Tropsha A.

J Chem Inf Model. 2015 Jan 26;55(1):63-71. doi: 10.1021/ci500519w. Epub 2014 Dec 18.

PMID:
25521713
4.

Clozapine-induced agranulocytosis is associated with rare HLA-DQB1 and HLA-B alleles.

Goldstein JI, Jarskog LF, Hilliard C, Alfirevic A, Duncan L, Fourches D, Huang H, Lek M, Neale BM, Ripke S, Shianna K, Szatkiewicz JP, Tropsha A, van den Oord EJ, Cascorbi I, Dettling M, Gazit E, Goff DC, Holden AL, Kelly DL, Malhotra AK, Nielsen J, Pirmohamed M, Rujescu D, Werge T, Levy DL, Josiassen RC, Kennedy JL, Lieberman JA, Daly MJ, Sullivan PF.

Nat Commun. 2014 Sep 4;5:4757. doi: 10.1038/ncomms5757.

5.

Expanding the scope of drug repurposing in pediatrics: the Children's Pharmacy Collaborative.

Blatt J, Farag S, Corey SJ, Sarrimanolis Z, Muratov E, Fourches D, Tropsha A, Janzen WP.

Drug Discov Today. 2014 Nov;19(11):1696-8. doi: 10.1016/j.drudis.2014.08.003. Epub 2014 Aug 19.

PMID:
25149597
6.

Prediction of binding affinity and efficacy of thyroid hormone receptor ligands using QSAR and structure-based modeling methods.

Politi R, Rusyn I, Tropsha A.

Toxicol Appl Pharmacol. 2014 Oct 1;280(1):177-89. doi: 10.1016/j.taap.2014.07.009. Epub 2014 Jul 21.

PMID:
25058446
7.

Chemical basis of interactions between engineered nanoparticles and biological systems.

Mu Q, Jiang G, Chen L, Zhou H, Fourches D, Tropsha A, Yan B.

Chem Rev. 2014 Aug 13;114(15):7740-81. doi: 10.1021/cr400295a. Epub 2014 Jun 13. No abstract available.

PMID:
24927254
8.
9.

Tuning HERG out: antitarget QSAR models for drug development.

Braga RC, Alves VM, Silva MF, Muratov E, Fourches D, Tropsha A, Andrade CH.

Curr Top Med Chem. 2014;14(11):1399-415.

PMID:
24805060
10.

Short communication: cheminformatics analysis to identify predictors of antiviral drug penetration into the female genital tract.

Thompson CG, Sedykh A, Nicol MR, Muratov E, Fourches D, Tropsha A, Kashuba AD.

AIDS Res Hum Retroviruses. 2014 Nov;30(11):1058-64. doi: 10.1089/AID.2013.0254. Epub 2014 Mar 13.

PMID:
24512359
11.

Application of quantitative structure-activity relationship models of 5-HT1A receptor binding to virtual screening identifies novel and potent 5-HT1A ligands.

Luo M, Wang XS, Roth BL, Golbraikh A, Tropsha A.

J Chem Inf Model. 2014 Feb 24;54(2):634-47. doi: 10.1021/ci400460q. Epub 2014 Feb 12.

12.

HTS navigator: freely accessible cheminformatics software for analyzing high-throughput screening data.

Fourches D, Sassano MF, Roth BL, Tropsha A.

Bioinformatics. 2014 Feb 15;30(4):588-9. doi: 10.1093/bioinformatics/btt718. Epub 2013 Dec 28.

13.

QSAR modeling: where have you been? Where are you going to?

Cherkasov A, Muratov EN, Fourches D, Varnek A, Baskin II, Cronin M, Dearden J, Gramatica P, Martin YC, Todeschini R, Consonni V, Kuz'min VE, Cramer R, Benigni R, Yang C, Rathman J, Terfloth L, Gasteiger J, Richard A, Tropsha A.

J Med Chem. 2014 Jun 26;57(12):4977-5010. doi: 10.1021/jm4004285. Epub 2014 Jan 6.

PMID:
24351051
14.

PITPs as targets for selectively interfering with phosphoinositide signaling in cells.

Nile AH, Tripathi A, Yuan P, Mousley CJ, Suresh S, Wallace IM, Shah SD, Pohlhaus DT, Temple B, Nislow C, Giaever G, Tropsha A, Davis RW, St Onge RP, Bankaitis VA.

Nat Chem Biol. 2014 Jan;10(1):76-84. doi: 10.1038/nchembio.1389. Epub 2013 Nov 24.

15.

Data set modelability by QSAR.

Golbraikh A, Muratov E, Fourches D, Tropsha A.

J Chem Inf Model. 2014 Jan 27;54(1):1-4. doi: 10.1021/ci400572x. Epub 2014 Jan 8.

16.

Computer-aided design of liposomal drugs: In silico prediction and experimental validation of drug candidates for liposomal remote loading.

Cern A, Barenholz Y, Tropsha A, Goldblum A.

J Control Release. 2014 Jan 10;173:125-31. doi: 10.1016/j.jconrel.2013.10.029. Epub 2013 Oct 31.

17.

A systems chemical biology study of malate synthase and isocitrate lyase inhibition in Mycobacterium tuberculosis during active and NRP growth.

May EE, Leitão A, Tropsha A, Oprea TI.

Comput Biol Chem. 2013 Dec;47:167-80. doi: 10.1016/j.compbiolchem.2013.07.002. Epub 2013 Sep 4.

18.

Integrative chemical-biological read-across approach for chemical hazard classification.

Low Y, Sedykh A, Fourches D, Golbraikh A, Whelan M, Rusyn I, Tropsha A.

Chem Res Toxicol. 2013 Aug 19;26(8):1199-208. doi: 10.1021/tx400110f. Epub 2013 Aug 5.

19.

Predicting binding affinity of CSAR ligands using both structure-based and ligand-based approaches.

Fourches D, Muratov E, Ding F, Dokholyan NV, Tropsha A.

J Chem Inf Model. 2013 Aug 26;53(8):1915-22. doi: 10.1021/ci400216q. Epub 2013 Jul 17.

20.

Identification of putative estrogen receptor-mediated endocrine disrupting chemicals using QSAR- and structure-based virtual screening approaches.

Zhang L, Sedykh A, Tripathi A, Zhu H, Afantitis A, Mouchlis VD, Melagraki G, Rusyn I, Tropsha A.

Toxicol Appl Pharmacol. 2013 Oct 1;272(1):67-76. doi: 10.1016/j.taap.2013.04.032. Epub 2013 May 23.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Loading ...
Write to the Help Desk