Send to:

Choose Destination
See comment in PubMed Commons below
Nanoscale Res Lett. 2013 Apr 17;8(1):177. doi: 10.1186/1556-276X-8-177.

Metal silicide/poly-Si Schottky diodes for uncooled microbolometers.

Author information

  • 1A M Prokhorov General Physics Institute of the Russian Academy of Sciences, A M Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, Moscow, 119991, Russia.


: Nickel silicide Schottky diodes formed on polycrystalline Si 〈P〉 films are proposed as temperature sensors of monolithic uncooled microbolometer infrared focal plane arrays. The structure and composition of nickel silicide/polycrystalline silicon films synthesized in a low-temperature process are examined by means of transmission electron microscopy. The Ni silicide is identified as a multi-phase compound composed of 20% to 40% of Ni3Si, 30% to 60% of Ni2Si, and 10% to 30% of NiSi with probable minor content of NiSi2 at the silicide/poly-Si interface. Rectification ratios of the Schottky diodes vary from about 100 to about 20 for the temperature increasing from 22â"ƒ to 70â"ƒ; they exceed 1,000 at 80 K. A barrier of around 0.95 eV is found to control the photovoltage spectra at room temperature. A set of barriers is observed in photo-electromotive force spectra at 80 K and attributed to the Ni silicide/poly-Si interface. Absolute values of temperature coefficients of voltage and current are found to vary from 0.3%â"ƒ to 0.6%/â"ƒ for forward bias and around 2.5%/â"ƒ for reverse bias of the diodes.

Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Write to the Help Desk