Format
Items per page
Sort by

Send to:

Choose Destination

Search results

Items: 1 to 20 of 53

1.

Correct machine learning on protein sequences: a peer-reviewing perspective.

Walsh I, Pollastri G, Tosatto SC.

Brief Bioinform. 2015 Sep 26. pii: bbv082. [Epub ahead of print]

PMID:
26411473
2.
3.

Reconstructing protein structures by neural network pairwise interaction fields and iterative decoy set construction.

Mirabello C, Adelfio A, Pollastri G.

Biomolecules. 2014 Feb 10;4(1):160-80. doi: 10.3390/biom4010160.

4.

Toward an accurate prediction of inter-residue distances in proteins using 2D recursive neural networks.

Kukic P, Mirabello C, Tradigo G, Walsh I, Veltri P, Pollastri G.

BMC Bioinformatics. 2014 Jan 10;15:6. doi: 10.1186/1471-2105-15-6.

5.

SCLpredT: Ab initio and homology-based prediction of subcellular localization by N-to-1 neural networks.

Adelfio A, Volpato V, Pollastri G.

Springerplus. 2013 Oct 3;2:502. doi: 10.1186/2193-1801-2-502. eCollection 2013.

6.

CPPpred: prediction of cell penetrating peptides.

Holton TA, Pollastri G, Shields DC, Mooney C.

Bioinformatics. 2013 Dec 1;29(23):3094-6. doi: 10.1093/bioinformatics/btt518. Epub 2013 Sep 23.

7.

Predicting binding within disordered protein regions to structurally characterised peptide-binding domains.

Khan W, Duffy F, Pollastri G, Shields DC, Mooney C.

PLoS One. 2013 Sep 3;8(9):e72838. doi: 10.1371/journal.pone.0072838. eCollection 2013.

8.

Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules.

Lusci A, Pollastri G, Baldi P.

J Chem Inf Model. 2013 Jul 22;53(7):1563-75. doi: 10.1021/ci400187y. Epub 2013 Jul 2.

9.

Porter, PaleAle 4.0: high-accuracy prediction of protein secondary structure and relative solvent accessibility.

Mirabello C, Pollastri G.

Bioinformatics. 2013 Aug 15;29(16):2056-8. doi: 10.1093/bioinformatics/btt344. Epub 2013 Jun 14.

10.

SCL-Epred: a generalised de novo eukaryotic protein subcellular localisation predictor.

Mooney C, Cessieux A, Shields DC, Pollastri G.

Amino Acids. 2013 Aug;45(2):291-9. doi: 10.1007/s00726-013-1491-3. Epub 2013 Apr 9.

PMID:
23568340
11.

[Prevalence of degenerative aortic valve stenosis in the elderly: results of a large community-based epidemiological study].

Bordoni B, Saia F, Ciuca C, Marrozzini C, Santoro M, Dall'Ara G, Anderlucci L, Montefiori M, Moretti C, Alberti A, Bragagni G, Montori C, Pollastri G, Cocchi D, Marzocchi A; Ricercatori dello Studio ELISA.

G Ital Cardiol (Rome). 2013 Apr;14(4):262-8. doi: 10.1714/1257.13881. Italian.

PMID:
23567767
12.

PeptideLocator: prediction of bioactive peptides in protein sequences.

Mooney C, Haslam NJ, Holton TA, Pollastri G, Shields DC.

Bioinformatics. 2013 May 1;29(9):1120-6. doi: 10.1093/bioinformatics/btt103. Epub 2013 Mar 16.

13.

Accurate prediction of protein enzymatic class by N-to-1 Neural Networks.

Volpato V, Adelfio A, Pollastri G.

BMC Bioinformatics. 2013;14 Suppl 1:S11. doi: 10.1186/1471-2105-14-S1-S11. Epub 2013 Jan 14.

14.

How to improve retromandibular transmasseteric anteroparotid approach for mandibular condylar fractures: our clinical experience.

Salgarelli AC, Anesi A, Bellini P, Pollastri G, Tanza D, Barberini S, Chiarini L.

Int J Oral Maxillofac Surg. 2013 Apr;42(4):464-9. doi: 10.1016/j.ijom.2012.12.012. Epub 2013 Feb 8.

PMID:
23395651
15.

Towards the improved discovery and design of functional peptides: common features of diverse classes permit generalized prediction of bioactivity.

Mooney C, Haslam NJ, Pollastri G, Shields DC.

PLoS One. 2012;7(10):e45012. doi: 10.1371/journal.pone.0045012. Epub 2012 Oct 8.

16.

Prediction of short linear protein binding regions.

Mooney C, Pollastri G, Shields DC, Haslam NJ.

J Mol Biol. 2012 Jan 6;415(1):193-204. doi: 10.1016/j.jmb.2011.10.025. Epub 2011 Oct 21.

PMID:
22079048
17.

SCLpred: protein subcellular localization prediction by N-to-1 neural networks.

Mooney C, Wang YH, Pollastri G.

Bioinformatics. 2011 Oct 15;27(20):2812-9. doi: 10.1093/bioinformatics/btr494. Epub 2011 Aug 27.

18.

Neural network pairwise interaction fields for protein model quality assessment and ab initio protein folding.

Martin AJ, Mirabello C, Pollastri G.

Curr Protein Pept Sci. 2011 Sep;12(6):549-62.

PMID:
21787307
19.

In silico protein motif discovery and structural analysis.

Mooney C, Davey N, Martin AJ, Walsh I, Shields DC, Pollastri G.

Methods Mol Biol. 2011;760:341-53. doi: 10.1007/978-1-61779-176-5_21.

PMID:
21780007
20.

CSpritz: accurate prediction of protein disorder segments with annotation for homology, secondary structure and linear motifs.

Walsh I, Martin AJ, Di Domenico T, Vullo A, Pollastri G, Tosatto SC.

Nucleic Acids Res. 2011 Jul;39(Web Server issue):W190-6. doi: 10.1093/nar/gkr411. Epub 2011 Jun 6.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Loading ...
Write to the Help Desk