Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Nanoscale Res Lett. 2011 Mar 15;6(1):222. doi: 10.1186/1556-276X-6-222.

Heterogeneous nanofluids: natural convection heat transfer enhancement.

Author information

  • 1ENS-Cachan Dpt GC/LMT, 61, Av du Président Wilson 94235 Cachan Cedex, France. rachid.bennacer@dgc.ens-cachan.fr.

Abstract

Convective heat transfer using different nanofluid types is investigated. The domain is differentially heated and nanofluids are treated as heterogeneous mixtures with weak solutal diffusivity and possible Soret separation. Owing to the pronounced Soret effect of these materials in combination with a considerable solutal expansion, the resulting solutal buoyancy forces could be significant and interact with the initial thermal convection. A modified formulation taking into account the thermal conductivity, viscosity versus nanofluids type and concentration and the spatial heterogeneous concentration induced by the Soret effect is presented. The obtained results, by solving numerically the full governing equations, are found to be in good agreement with the developed solution based on the scale analysis approach. The resulting convective flows are found to be dependent on the local particle concentration φ and the corresponding solutal to thermal buoyancy ratio N. The induced nanofluid heterogeneity showed a significant heat transfer modification. The heat transfer in natural convection increases with nanoparticle concentration but remains less than the enhancement previously underlined in forced convection case.

PMID:
21711755
[PubMed]
PMCID:
PMC3211280
Free PMC Article

Images from this publication.See all images (12)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Write to the Help Desk