Format
Items per page
Sort by

Send to:

Choose Destination

Search results

Items: 1 to 20 of 80

1.

Micro-RNAs in the parathyroid: a new portal in understanding secondary hyperparathyroidism.

Shilo V, Silver J, Naveh-Many T.

Curr Opin Nephrol Hypertens. 2016 Jul;25(4):271-7. doi: 10.1097/MNH.0000000000000227.

PMID:
27138227
2.

The fibroblast growth factor receptor mediates the increased FGF23 expression in acute and chronic uremia.

Hassan A, Durlacher K, Silver J, Naveh-Many T, Levi R.

Am J Physiol Renal Physiol. 2016 Feb 1;310(3):F217-21. doi: 10.1152/ajprenal.00332.2015. Epub 2015 Aug 26.

PMID:
26311115
3.

Phosphorylation of Ribosomal Protein S6 Mediates Mammalian Target of Rapamycin Complex 1-Induced Parathyroid Cell Proliferation in Secondary Hyperparathyroidism.

Volovelsky O, Cohen G, Kenig A, Wasserman G, Dreazen A, Meyuhas O, Silver J, Naveh-Many T.

J Am Soc Nephrol. 2016 Apr;27(4):1091-101. doi: 10.1681/ASN.2015040339. Epub 2015 Aug 17.

PMID:
26283674
4.

Parathyroid-specific deletion of dicer-dependent microRNAs abrogates the response of the parathyroid to acute and chronic hypocalcemia and uremia.

Shilo V, Ben-Dov IZ, Nechama M, Silver J, Naveh-Many T.

FASEB J. 2015 Sep;29(9):3964-76. doi: 10.1096/fj.15-274191. Epub 2015 Jun 8.

PMID:
26054367
5.

Parathyroid hormone activates the orphan nuclear receptor Nurr1 to induce FGF23 transcription.

Meir T, Durlacher K, Pan Z, Amir G, Richards WG, Silver J, Naveh-Many T.

Kidney Int. 2014 Dec;86(6):1106-15. doi: 10.1038/ki.2014.215. Epub 2014 Jun 18.

PMID:
24940803
6.

FGF-23 and secondary hyperparathyroidism in chronic kidney disease.

Silver J, Naveh-Many T.

Nat Rev Nephrol. 2013 Nov;9(11):641-9. doi: 10.1038/nrneph.2013.147. Epub 2013 Jul 23. Review.

PMID:
23877588
7.

Multiple pathways for high voltage-activated ca(2+) influx in anterior pituitary lactotrophs and somatotrophs.

Tzour A, Sosial E, Meir T, Canello T, Naveh-Many T, Gabizon R, Nussinovitch I.

J Neuroendocrinol. 2013 Jan;25(1):76-86. doi: 10.1111/j.1365-2826.2012.02372.x.

PMID:
22882461
8.

FGF23 and the parathyroid.

Silver J, Naveh-Many T.

Adv Exp Med Biol. 2012;728:92-9. doi: 10.1007/978-1-4614-0887-1_6. Review.

PMID:
22396164
9.

PTH increases FGF23 gene expression and mediates the high-FGF23 levels of experimental kidney failure: a bone parathyroid feedback loop.

Lavi-Moshayoff V, Wasserman G, Meir T, Silver J, Naveh-Many T.

Am J Physiol Renal Physiol. 2010 Oct;299(4):F882-9. doi: 10.1152/ajprenal.00360.2010. Epub 2010 Aug 4.

10.

FGF23 and the parathyroid glands.

Silver J, Naveh-Many T.

Pediatr Nephrol. 2010 Nov;25(11):2241-5. doi: 10.1007/s00467-010-1565-3. Epub 2010 Jun 5. Review.

PMID:
20526631
11.

Minireview: the play of proteins on the parathyroid hormone messenger ribonucleic Acid regulates its expression.

Naveh-Many T.

Endocrinology. 2010 Apr;151(4):1398-402. doi: 10.1210/en.2009-1160. Epub 2009 Dec 23. Review.

PMID:
20032048
12.

Parathyroid cell resistance to fibroblast growth factor 23 in secondary hyperparathyroidism of chronic kidney disease.

Galitzer H, Ben-Dov IZ, Silver J, Naveh-Many T.

Kidney Int. 2010 Feb;77(3):211-8. doi: 10.1038/ki.2009.464. Epub 2009 Dec 16.

13.

KSRP-PMR1-exosome association determines parathyroid hormone mRNA levels and stability in transfected cells.

Nechama M, Peng Y, Bell O, Briata P, Gherzi R, Schoenberg DR, Naveh-Many T.

BMC Cell Biol. 2009 Sep 23;10:70. doi: 10.1186/1471-2121-10-70.

14.

The peptidyl-prolyl isomerase Pin1 determines parathyroid hormone mRNA levels and stability in rat models of secondary hyperparathyroidism.

Nechama M, Uchida T, Mor Yosef-Levi I, Silver J, Naveh-Many T.

J Clin Invest. 2009 Oct;119(10):3102-14. doi: 10.1172/JCI39522. Epub 2009 Sep 21.

15.

Deletion of the vitamin D receptor specifically in the parathyroid demonstrates a limited role for the receptor in parathyroid physiology.

Meir T, Levi R, Lieben L, Libutti S, Carmeliet G, Bouillon R, Silver J, Naveh-Many T.

Am J Physiol Renal Physiol. 2009 Nov;297(5):F1192-8. doi: 10.1152/ajprenal.00360.2009. Epub 2009 Aug 19.

16.

The complex regulation of HIC (Human I-mfa domain containing protein) expression.

Reiss-Sklan E, Levitzki A, Naveh-Many T.

PLoS One. 2009 Jul 7;4(7):e6152. doi: 10.1371/journal.pone.0006152.

17.

Human PTH gene regulation in vivo using transgenic mice.

Lavi-Moshayoff V, Silver J, Naveh-Many T.

Am J Physiol Renal Physiol. 2009 Sep;297(3):F713-9. doi: 10.1152/ajprenal.00161.2009. Epub 2009 Jul 1.

18.

The calcium-sensing receptor regulates parathyroid hormone gene expression in transfected HEK293 cells.

Galitzer H, Lavi-Moshayoff V, Nechama M, Meir T, Silver J, Naveh-Many T.

BMC Biol. 2009 Apr 27;7:17. doi: 10.1186/1741-7007-7-17.

19.

Phosphate and the parathyroid.

Silver J, Naveh-Many T.

Kidney Int. 2009 May;75(9):898-905. doi: 10.1038/ki.2008.642. Epub 2009 Jan 7. Review.

20.

Regulation of PTH mRNA stability by the calcimimetic R568 and the phosphorus binder lanthanum carbonate in CKD.

Nechama M, Ben-Dov IZ, Silver J, Naveh-Many T.

Am J Physiol Renal Physiol. 2009 Apr;296(4):F795-800. doi: 10.1152/ajprenal.90625.2008. Epub 2009 Jan 7.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Loading ...
Write to the Help Desk