Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Med Chem. 2003 Aug 14;46(17):3680-7.

Design and synthesis of novel pyridoxine 5'-phosphonates as potential antiischemic agents.

Author information

  • 1Medicure Inc. and CanamBioresearch Inc., 6-1200 Waverley Street, Winnipeg, Manitoba, Canada, R3T 0P4.

Abstract

On the basis of previous reports that the natural cofactor pyridoxal 5'-phosphate 1 appears to display cardioprotective properties, a series of novel mimetics of this cofactor were envisioned. As pyridoxal 5'-phosphate is a natural compound and is subject to biological degradation and elimination pathways, the objective was to generate active phosphonates that are potentially less light sensitive and more stable in vivo than the parent vitamer. Several phosphonates were designed and synthesized, and in particular, compounds 10 and 14 displayed similar biological traits to natural phosphate 1 in the rat model of regional myocardial ischemia and reperfusion. A reduction in infarct size was observed in animals treated with these compounds. In an effort to identify other relevant cardioprotective models in order to potentially define structure-activity relationships, these three compounds were tested in the rat working heart model. Compounds 1, 10, and 14 were compared to dichloroacetic acid (DCA) as positive control in this model. As with DCA, compounds 1, 10, and 14 were found to induce a shift from fatty acid oxidation toward glucose oxidation.

PMID:
12904072
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk