Format
Sort by

Send to

Choose Destination

Search results

Items: 1 to 20 of 41

1.

The sorghum SWEET gene family: stem sucrose accumulation as revealed through transcriptome profiling.

Mizuno H, Kasuga S, Kawahigashi H.

Biotechnol Biofuels. 2016 Jun 17;9:127. doi: 10.1186/s13068-016-0546-6. eCollection 2016.

2.

The Sorghum Gene for Leaf Color Changes upon Wounding (P) Encodes a Flavanone 4-Reductase in the 3-Deoxyanthocyanidin Biosynthesis Pathway.

Kawahigashi H, Kasuga S, Sawada Y, Yonemaru J, Ando T, Kanamori H, Wu J, Mizuno H, Momma M, Fujimoto Z, Hirai MY, Matsumoto T.

G3 (Bethesda). 2016 May 3;6(5):1439-47. doi: 10.1534/g3.115.026104.

3.

Expression level of a flavonoid 3'-hydroxylase gene determines pathogen-induced color variation in sorghum.

Mizuno H, Yazawa T, Kasuga S, Sawada Y, Ogata J, Ando T, Kanamori H, Yonemaru J, Wu J, Hirai MY, Matsumoto T, Kawahigashi H.

BMC Res Notes. 2014 Oct 27;7:761. doi: 10.1186/1756-0500-7-761.

4.

Phytochrome C is a key factor controlling long-day flowering in barley.

Nishida H, Ishihara D, Ishii M, Kaneko T, Kawahigashi H, Akashi Y, Saisho D, Tanaka K, Handa H, Takeda K, Kato K.

Plant Physiol. 2013 Oct;163(2):804-14. doi: 10.1104/pp.113.222570. Epub 2013 Sep 6.

5.

Simultaneous transcriptome analysis of Sorghum and Bipolaris sorghicola by using RNA-seq in combination with de novo transcriptome assembly.

Yazawa T, Kawahigashi H, Matsumoto T, Mizuno H.

PLoS One. 2013 Apr 30;8(4):e62460. doi: 10.1371/journal.pone.0062460. Print 2013.

6.

Genomic inversion caused by gamma irradiation contributes to downregulation of a WBC11 homolog in bloomless sorghum.

Mizuno H, Kawahigashi H, Ogata J, Minami H, Kanamori H, Nakagawa H, Matsumoto T.

Theor Appl Genet. 2013 Jun;126(6):1513-20. doi: 10.1007/s00122-013-2069-x. Epub 2013 Mar 6.

PMID:
23463491
7.

Overexpression of the pathogen-inducible wheat TaWRKY45 gene confers disease resistance to multiple fungi in transgenic wheat plants.

Bahrini I, Ogawa T, Kobayashi F, Kawahigashi H, Handa H.

Breed Sci. 2011 Dec;61(4):319-26. doi: 10.1270/jsbbs.61.319. Epub 2011 Dec 15.

8.

Global transcriptome analysis reveals distinct expression among duplicated genes during sorghum-interaction.

Mizuno H, Kawahigashi H, Kawahara Y, Kanamori H, Ogata J, Minami H, Itoh T, Matsumoto T.

BMC Plant Biol. 2012 Jul 29;12:121. doi: 10.1186/1471-2229-12-121.

9.

Development of an efficient agrobacterium-mediated gene targeting system for rice and analysis of rice knockouts lacking granule-bound starch synthase (Waxy) and β1,2-xylosyltransferase.

Ozawa K, Wakasa Y, Ogo Y, Matsuo K, Kawahigashi H, Takaiwa F.

Plant Cell Physiol. 2012 Apr;53(4):755-61. doi: 10.1093/pcp/pcs016. Epub 2012 Feb 10.

PMID:
22327484
10.

Retrogenes in rice (Oryza sativa L. ssp. japonica) exhibit correlated expression with their source genes.

Sakai H, Mizuno H, Kawahara Y, Wakimoto H, Ikawa H, Kawahigashi H, Kanamori H, Matsumoto T, Itoh T, Gaut BS.

Genome Biol Evol. 2011;3:1357-68. doi: 10.1093/gbe/evr111. Epub 2011 Oct 31.

11.

The differential expression of HvCO9, a member of the CONSTANS-like gene family, contributes to the control of flowering under short-day conditions in barley.

Kikuchi R, Kawahigashi H, Oshima M, Ando T, Handa H.

J Exp Bot. 2012 Jan;63(2):773-84. doi: 10.1093/jxb/err299. Epub 2011 Oct 20.

12.

A wheat homolog of MOTHER OF FT AND TFL1 acts in the regulation of germination.

Nakamura S, Abe F, Kawahigashi H, Nakazono K, Tagiri A, Matsumoto T, Utsugi S, Ogawa T, Handa H, Ishida H, Mori M, Kawaura K, Ogihara Y, Miura H.

Plant Cell. 2011 Sep;23(9):3215-29. doi: 10.1105/tpc.111.088492. Epub 2011 Sep 6.

13.

Positional cloning of ds1, the target leaf spot resistance gene against Bipolaris sorghicola in sorghum.

Kawahigashi H, Kasuga S, Ando T, Kanamori H, Wu J, Yonemaru J, Sazuka T, Matsumoto T.

Theor Appl Genet. 2011 Jun;123(1):131-42. doi: 10.1007/s00122-011-1572-1. Epub 2011 Mar 27.

PMID:
21442410
14.

Transgenic plants for phytoremediation of herbicides.

Kawahigashi H.

Curr Opin Biotechnol. 2009 Apr;20(2):225-30. doi: 10.1016/j.copbio.2009.01.010. Epub 2009 Mar 5. Review.

PMID:
19269160
15.

A genetic network of flowering-time genes in wheat leaves, in which an APETALA1/FRUITFULL-like gene, VRN1, is upstream of FLOWERING LOCUS T.

Shimada S, Ogawa T, Kitagawa S, Suzuki T, Ikari C, Shitsukawa N, Abe T, Kawahigashi H, Kikuchi R, Handa H, Murai K.

Plant J. 2009 May;58(4):668-81. doi: 10.1111/j.1365-313X.2009.03806.x. Epub 2009 Jan 28. Erratum in: Plant J. 2009 Dec;60(5):929.

16.

Molecular and functional characterization of PEBP genes in barley reveal the diversification of their roles in flowering.

Kikuchi R, Kawahigashi H, Ando T, Tonooka T, Handa H.

Plant Physiol. 2009 Mar;149(3):1341-53. doi: 10.1104/pp.108.132134. Epub 2009 Jan 23.

17.

Transgenic rice plants expressing human p450 genes involved in xenobiotic metabolism for phytoremediation.

Kawahigashi H, Hirose S, Ohkawa H, Ohkawa Y.

J Mol Microbiol Biotechnol. 2008;15(2-3):212-9. doi: 10.1159/000121332. Epub 2008 Jul 28. Review.

PMID:
18685273
18.

Efficient transformation of wheat by using a mutated rice acetolactate synthase gene as a selectable marker.

Ogawa T, Kawahigashi H, Toki S, Handa H.

Plant Cell Rep. 2008 Aug;27(8):1325-31. doi: 10.1007/s00299-008-0553-6. Epub 2008 May 1.

PMID:
18449542
19.

Herbicide-induced anthocyanin accumulation in transgenic rice by expression of rice OSB2 under the control of rice CYP72A21 promoter.

Hirose S, Kawahigashi H, Tagiri A, Ohkawa Y.

J Agric Food Chem. 2008 Feb 27;56(4):1259-63. doi: 10.1021/jf071575j. Epub 2008 Jan 25.

PMID:
18217708
20.

Chemically induced expression of rice OSB2 under the control of the OsPR1.1 promoter confers increased anthocyanin accumulation in transgenic rice.

Kawahigashi H, Hirose S, Iwai T, Ohashi Y, Sakamoto W, Maekawa M, Ohkawa Y.

J Agric Food Chem. 2007 Feb 21;55(4):1241-7. Epub 2007 Jan 25.

PMID:
17253710
Items per page

Supplemental Content

Loading ...
Write to the Help Desk