Display Settings:

Format

Send to:

Choose Destination

See 1 citation found by title matching your search:

See comment in PubMed Commons below
Nature. 1997 Sep 18;389(6648):265-8.

Isotopic evidence for extraterrestrial non-racemic amino acids in the Murchison meteorite.

Author information

  • 1School of Geology and Geophysics, The University of Oklahoma, Norman 73019, USA. AB1635@OU.EDU

Abstract

Many amino acids contain an asymmetric centre, occurring as laevorotatory, L, or dextrorotatory, D, compounds. It is generally assumed that abiotic synthesis of amino acids on the early Earth resulted in racemic mixtures (L- and D-enantiomers in equal abundance). But the origin of life required, owing to conformational constraints, the almost exclusive selection of either L- or D-enantiomers, and the question of why living systems on the Earth consist of L-enantiomers rather than D-enantiomers is unresolved. A substantial fraction of the organic compounds on the early Earth may have been derived from comet and meteorite impacts. It has been reported previously that amino acids in the Murchison meteorite exhibit an excess of L-enantiomers, raising the possibility that a similar excess was present in the initial inventory of organic compounds on the Earth. The stable carbon isotope compositions of individual amino acids in Murchison support an extraterrestrial origin -- rather than a terrestrial overprint of biological amino acids-although reservations have persisted. Here we show that individual amino-acid enantiomers from Murchison are enriched in 15N relative to their terrestrial counterparts, so confirming an extraterrestrial source for an L-enantiomer excess in the Solar System that may predate the origin of life on the Earth.

Comment in

PMID:
9305838
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk