Send to:

Choose Destination

See 1 citation found by title matching your search:

See comment in PubMed Commons below
J Immunol. 2011 Apr 15;186(8):4805-18. doi: 10.4049/jimmunol.1003102. Epub 2011 Mar 11.

Hematopoietic lineage cell-specific protein 1 functions in concert with the Wiskott-Aldrich syndrome protein to promote podosome array organization and chemotaxis in dendritic cells.

Author information

  • 1Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.


Dendritic cells (DCs) are professional APCs that reside in peripheral tissues and survey the body for pathogens. Upon activation by inflammatory signals, DCs undergo a maturation process and migrate to lymphoid organs, where they present pathogen-derived Ags to T cells. DC migration depends on tight regulation of the actin cytoskeleton to permit rapid adaptation to environmental cues. We investigated the role of hematopoietic lineage cell-specific protein 1 (HS1), the hematopoietic homolog of cortactin, in regulating the actin cytoskeleton of murine DCs. HS1 localized to lamellipodial protrusions and podosomes, actin-rich structures associated with adhesion and migration. DCs from HS1(-/-) mice showed aberrant lamellipodial dynamics. Moreover, although these cells formed recognizable podosomes, their podosome arrays were loosely packed and improperly localized within the cell. HS1 interacts with Wiskott-Aldrich syndrome protein (WASp), another key actin-regulatory protein, through mutual binding to WASp-interacting protein. Comparative analysis of DCs deficient for HS1, WASp or both proteins revealed unique roles for these proteins in regulating podosomes with WASp being essential for podosome formation and with HS1 ensuring efficient array organization. WASp recruitment to podosome cores was independent of HS1, whereas HS1 recruitment required Src homology 3 domain-dependent interactions with the WASp/WASp-interacting protein heterodimer. In migration assays, the phenotypes of HS1- and WASp-deficient DCs were related, but distinct. WASp(-/y) DCs migrating in a chemokine gradient showed a large decrease in velocity and diminished directional persistence. In contrast, HS1(-/-) DCs migrated faster than wild-type cells, but directional persistence was significantly reduced. These studies show that HS1 functions in concert with WASp to fine-tune DC cytoarchitecture and direct cell migration.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk