Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 22

1.

Evaluation of In-Situ Magnetic Signals from Iron Oxide Nanoparticle-Labeled PC12 Cells by Atomic Force Microscopy.

Wang L, Min Y, Wang Z, Riggio C, Calatayud MP, Pinkernelle J, Raffa V, Goya GF, Keilhoff G, Cuschieri A.

J Biomed Nanotechnol. 2015 Mar;11(3):457-68.

PMID:
26307828
2.

The effect of surface charge of functionalized Fe3O4 nanoparticles on protein adsorption and cell uptake.

Calatayud MP, Sanz B, Raffa V, Riggio C, Ibarra MR, Goya GF.

Biomaterials. 2014 Aug;35(24):6389-99. doi: 10.1016/j.biomaterials.2014.04.009. Epub 2014 May 9.

PMID:
24816288
3.

Preparation and in vivo evaluation of multifunctional ⁹⁰Y-labeled magnetic nanoparticles designed for cancer therapy.

Radović M, Calatayud MP, Goya GF, Ibarra MR, Antić B, Spasojević V, Nikolić N, Janković D, Mirković M, Vranješ-Đurić S.

J Biomed Mater Res A. 2015 Jan;103(1):126-34. doi: 10.1002/jbm.a.35160. Epub 2014 Mar 20.

PMID:
24616186
4.

In vitro and in vivo experiments with iron oxide nanoparticles functionalized with DEXTRAN or polyethylene glycol for medical applications: magnetic targeting.

Mojica Pisciotti ML, Lima E Jr, Vasquez Mansilla M, Tognoli VE, Troiani HE, Pasa AA, Creczynski-Pasa TB, Silva AH, Gurman P, Colombo L, Goya GF, Lamagna A, Zysler RD.

J Biomed Mater Res B Appl Biomater. 2014 May;102(4):860-8. doi: 10.1002/jbm.b.33068. Epub 2014 Jan 23.

PMID:
24458920
5.

Magnetic nanoparticles as intraocular drug delivery system to target retinal pigmented epithelium (RPE).

Giannaccini M, Giannini M, Calatayud MP, Goya GF, Cuschieri A, Dente L, Raffa V.

Int J Mol Sci. 2014 Jan 22;15(1):1590-605. doi: 10.3390/ijms15011590.

6.

The orientation of the neuronal growth process can be directed via magnetic nanoparticles under an applied magnetic field.

Riggio C, Calatayud MP, Giannaccini M, Sanz B, Torres TE, Fernández-Pacheco R, Ripoli A, Ibarra MR, Dente L, Cuschieri A, Goya GF, Raffa V.

Nanomedicine. 2014 Oct;10(7):1549-58. doi: 10.1016/j.nano.2013.12.008. Epub 2014 Jan 7.

PMID:
24407149
7.

Cell death induced by AC magnetic fields and magnetic nanoparticles: current state and perspectives.

Goya GF, Asín L, Ibarra MR.

Int J Hyperthermia. 2013 Dec;29(8):810-8. doi: 10.3109/02656736.2013.838646. Epub 2013 Oct 16. Review.

PMID:
24131333
8.

Generation of magnetized olfactory ensheathing cells for regenerative studies in the central and peripheral nervous tissue.

Riggio C, Nocentini S, Catalayud MP, Goya GF, Cuschieri A, Raffa V, del Río JA.

Int J Mol Sci. 2013 May 24;14(6):10852-68. doi: 10.3390/ijms140610852.

9.

Induced cell toxicity originates dendritic cell death following magnetic hyperthermia treatment.

Asín L, Goya GF, Tres A, Ibarra MR.

Cell Death Dis. 2013 Apr 18;4:e596. doi: 10.1038/cddis.2013.121.

10.

Magnetically-driven selective synthesis of Au clusters on Fe3O4 nanoparticles.

Sebastian V, Calatayud MP, Goya GF, Santamaria J.

Chem Commun (Camb). 2013 Jan 25;49(7):716-8. doi: 10.1039/c2cc37355f.

PMID:
23223273
11.

Application of magnetically induced hyperthermia in the model protozoan Crithidia fasciculata as a potential therapy against parasitic infections.

Grazú V, Silber AM, Moros M, Asín L, Torres TE, Marquina C, Ibarra MR, Goya GF.

Int J Nanomedicine. 2012;7:5351-60. doi: 10.2147/IJN.S35510. Epub 2012 Oct 8.

12.

Poly-l-lysine-coated magnetic nanoparticles as intracellular actuators for neural guidance.

Riggio C, Calatayud MP, Hoskins C, Pinkernelle J, Sanz B, Torres TE, Ibarra MR, Wang L, Keilhoff G, Goya GF, Raffa V, Cuschieri A.

Int J Nanomedicine. 2012;7:3155-66. doi: 10.2147/IJN.S28460. Epub 2012 Jun 25.

13.

Magnetic nanoparticles in primary neural cell cultures are mainly taken up by microglia.

Pinkernelle J, Calatayud P, Goya GF, Fansa H, Keilhoff G.

BMC Neurosci. 2012 Mar 22;13:32. doi: 10.1186/1471-2202-13-32.

14.

Controlled cell death by magnetic hyperthermia: effects of exposure time, field amplitude, and nanoparticle concentration.

Asín L, Ibarra MR, Tres A, Goya GF.

Pharm Res. 2012 May;29(5):1319-27. doi: 10.1007/s11095-012-0710-z. Epub 2012 Feb 24.

PMID:
22362408
15.

Magnetic field-assisted gene delivery: achievements and therapeutic potential.

Schwerdt JI, Goya GF, Calatayud MP, Hereñú CB, Reggiani PC, Goya RG.

Curr Gene Ther. 2012 Apr 1;12(2):116-26. Review.

PMID:
22348552
16.

Cell death induced by the application of alternating magnetic fields to nanoparticle-loaded dendritic cells.

Marcos-Campos I, Asín L, Torres TE, Marquina C, Tres A, Ibarra MR, Goya GF.

Nanotechnology. 2011 May 20;22(20):205101. doi: 10.1088/0957-4484/22/20/205101. Epub 2011 Mar 28.

PMID:
21444956
17.

Magnetically triggered nanocomposite membranes: a versatile platform for triggered drug release.

Hoare T, Timko BP, Santamaria J, Goya GF, Irusta S, Lau S, Stefanescu CF, Lin D, Langer R, Kohane DS.

Nano Lett. 2011 Mar 9;11(3):1395-400. doi: 10.1021/nl200494t. Epub 2011 Feb 23.

18.

Magnetic hydrogels derived from polysaccharides with improved specific power absorption: potential devices for remotely triggered drug delivery.

Hernández R, Sacristán J, Asín L, Torres TE, Ibarra MR, Goya GF, Mijangos C.

J Phys Chem B. 2010 Sep 23;114(37):12002-7. doi: 10.1021/jp105556e.

PMID:
20806925
19.

Optimization of photoluminescence of Y(2)O(3):Eu and Gd(2)O(3):Eu phosphors synthesized by thermolysis of 2,4-pentanedione complexes.

Antic B, Rogan J, Kremenovic A, Nikolic AS, Vucinic-Vasic M, Bozanic DK, Goya GF, Colomban PH.

Nanotechnology. 2010 Jun 18;21(24):245702. doi: 10.1088/0957-4484/21/24/245702. Epub 2010 May 20.

PMID:
20484791
20.

A magnetically triggered composite membrane for on-demand drug delivery.

Hoare T, Santamaria J, Goya GF, Irusta S, Lin D, Lau S, Padera R, Langer R, Kohane DS.

Nano Lett. 2009 Oct;9(10):3651-7. doi: 10.1021/nl9018935.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk