Format
Items per page
Sort by

Send to:

Choose Destination

Search results

Items: 1 to 20 of 131

1.

Neurospora crassa transcriptomics reveals oxidative stress and plasma membrane homeostasis biology genes as key targets in response to chitosan.

Lopez-Moya F, Kowbel D, Nueda MJ, Palma-Guerrero J, Glass NL, Lopez-Llorca LV.

Mol Biosyst. 2016 Jan 26;12(2):391-403. doi: 10.1039/c5mb00649j.

2.

Transcription profiling of the Neurospora crassa response to a group of synthetic (thio)xanthones and a natural acetophenone.

Pedro Gonçalves A, Silva N, Oliveira C, Kowbel DJ, Glass NL, Kijjoa A, Palmeira A, Sousa E, Pinto M, Videira A.

Genom Data. 2015 Feb 20;4:26-32. doi: 10.1016/j.gdata.2015.02.001. eCollection 2015 Jun.

3.

Direct target network of the Neurospora crassa plant cell wall deconstruction regulators CLR-1, CLR-2, and XLR-1.

Craig JP, Coradetti ST, Starr TL, Glass NL.

MBio. 2015 Oct 13;6(5):e01452-15. doi: 10.1128/mBio.01452-15.

4.

Deletion of homologs of the SREBP pathway results in hyper-production of cellulases in Neurospora crassa and Trichoderma reesei.

Reilly MC, Qin L, Craig JP, Starr TL, Glass NL.

Biotechnol Biofuels. 2015 Aug 19;8:121. doi: 10.1186/s13068-015-0297-9. eCollection 2015.

5.

Identification of Allorecognition Loci in Neurospora crassa by Genomics and Evolutionary Approaches.

Zhao J, Gladieux P, Hutchison E, Bueche J, Hall C, Perraudeau F, Glass NL.

Mol Biol Evol. 2015 Sep;32(9):2417-32. doi: 10.1093/molbev/msv125. Epub 2015 May 28.

6.

Detoxification of 5-hydroxymethylfurfural by the Pleurotus ostreatus lignolytic enzymes aryl alcohol oxidase and dehydrogenase.

Feldman D, Kowbel DJ, Glass NL, Yarden O, Hadar Y.

Biotechnol Biofuels. 2015 Apr 11;8:63. doi: 10.1186/s13068-015-0244-9. eCollection 2015.

7.

Expanding xylose metabolism in yeast for plant cell wall conversion to biofuels.

Li X, Yu VY, Lin Y, Chomvong K, Estrela R, Park A, Liang JM, Znameroski EA, Feehan J, Kim SR, Jin YS, Glass NL, Cate JH.

Elife. 2015 Feb 3;4. doi: 10.7554/eLife.05896.

8.

Identification and characterization of LFD-2, a predicted fringe protein required for membrane integrity during cell fusion in neurospora crassa.

Palma-Guerrero J, Zhao J, Gonçalves AP, Starr TL, Glass NL.

Eukaryot Cell. 2015 Mar;14(3):265-77. doi: 10.1128/EC.00233-14. Epub 2015 Jan 16.

9.

Neurospora crassa: looking back and looking forward at a model microbe.

Roche CM, Loros JJ, McCluskey K, Glass NL.

Am J Bot. 2014 Dec;101(12):2022-35. doi: 10.3732/ajb.1400377. Epub 2014 Nov 16. Review.

10.

HAM-5 functions as a MAP kinase scaffold during cell fusion in Neurospora crassa.

Jonkers W, Leeder AC, Ansong C, Wang Y, Yang F, Starr TL, Camp DG 2nd, Smith RD, Glass NL.

PLoS Genet. 2014 Nov 20;10(11):e1004783. doi: 10.1371/journal.pgen.1004783. eCollection 2014 Nov.

11.

VIB1, a link between glucose signaling and carbon catabolite repression, is essential for plant cell wall degradation by Neurospora crassa.

Xiong Y, Sun J, Glass NL.

PLoS Genet. 2014 Aug 21;10(8):e1004500. doi: 10.1371/journal.pgen.1004500. eCollection 2014 Aug.

12.

Transcriptional interference by antisense RNA is required for circadian clock function.

Xue Z, Ye Q, Anson SR, Yang J, Xiao G, Kowbel D, Glass NL, Crosthwaite SK, Liu Y.

Nature. 2014 Oct 30;514(7524):650-3. doi: 10.1038/nature13671. Epub 2014 Aug 17.

13.

Plant cell wall-degrading enzymes and their secretion in plant-pathogenic fungi.

Kubicek CP, Starr TL, Glass NL.

Annu Rev Phytopathol. 2014;52:427-51. doi: 10.1146/annurev-phyto-102313-045831. Epub 2014 Jun 16. Review.

PMID:
25001456
14.

The proteome and phosphoproteome of Neurospora crassa in response to cellulose, sucrose and carbon starvation.

Xiong Y, Coradetti ST, Li X, Gritsenko MA, Clauss T, Petyuk V, Camp D, Smith R, Cate JH, Yang F, Glass NL.

Fungal Genet Biol. 2014 Nov;72:21-33. doi: 10.1016/j.fgb.2014.05.005. Epub 2014 May 29.

15.

CZT-1 is a novel transcription factor controlling cell death and natural drug resistance in Neurospora crassa.

Gonçalves AP, Hall C, Kowbel DJ, Glass NL, Videira A.

G3 (Bethesda). 2014 Apr 8;4(6):1091-102. doi: 10.1534/g3.114.011312.

16.

Engineering the filamentous fungus Neurospora crassa for lipid production from lignocellulosic biomass.

Roche CM, Glass NL, Blanch HW, Clark DS.

Biotechnol Bioeng. 2014 Jun;111(6):1097-107. doi: 10.1002/bit.25211. Epub 2014 Apr 3.

PMID:
24700367
17.

Discovering functions of unannotated genes from a transcriptome survey of wild fungal isolates.

Ellison CE, Kowbel D, Glass NL, Taylor JW, Brem RB.

MBio. 2014 Apr 1;5(2):e01046-13. doi: 10.1128/mBio.01046-13.

18.

Identification and characterization of LFD1, a novel protein involved in membrane merger during cell fusion in Neurospora crassa.

Palma-Guerrero J, Leeder AC, Welch J, Glass NL.

Mol Microbiol. 2014 Apr;92(1):164-82. doi: 10.1111/mmi.12545. Epub 2014 Mar 6.

PMID:
24673848
19.

Evidence for transceptor function of cellodextrin transporters in Neurospora crassa.

Znameroski EA, Li X, Tsai JC, Galazka JM, Glass NL, Cate JH.

J Biol Chem. 2014 Jan 31;289(5):2610-9. doi: 10.1074/jbc.M113.533273. Epub 2013 Dec 16.

20.

A comparative systems analysis of polysaccharide-elicited responses in Neurospora crassa reveals carbon source-specific cellular adaptations.

Benz JP, Chau BH, Zheng D, Bauer S, Glass NL, Somerville CR.

Mol Microbiol. 2014 Jan;91(2):275-99. doi: 10.1111/mmi.12459. Epub 2013 Dec 4.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Loading ...
Write to the Help Desk