Send to:

Choose Destination

See 1 citation found using an alternative search:

See comment in PubMed Commons below
Toxicol Sci. 2012 Feb;125(2):544-57. doi: 10.1093/toxsci/kfr315. Epub 2011 Nov 22.

Genomic biomarkers of phthalate-induced male reproductive developmental toxicity: a targeted RT-PCR array approach for defining relative potency.

Author information

  • 1Reproductive Toxicology Branch, Toxicology Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA.


Male rat fetuses exposed to certain phthalate esters (PEs) during sexual differentiation display reproductive tract malformations due to reductions in testosterone (T) production and the expression of steroidogenesis- and INSL3-related genes. In the current study, we used a 96-well real-time PCR array containing key target genes representing sexual determination and differentiation, steroidogenesis, gubernaculum development, and androgen signaling pathways to rank the relative potency of several PEs. We executed dose-response studies with diisobutyl (DIBP), dipentyl (DPeP), dihexyl (DHP), diheptyl (DHeP), diisononyl (DINP), or diisodecyl phthalate (DIDP) and serial dilutions of a mixture of nine phthalates. All phthalates, with the exception of DIDP, reduced fetal testicular T production. Several genes involved in cholesterol transport, androgen synthesis, and Insl3 also were downregulated in a dose-responsive manner by DIBP, DPeP, DHP, DHeP, DINP, and the 9-PE mixture. Despite speculation of peroxisome proliferator activated receptor (PPAR) involvement in the effects of PEs on the fetal testis, no PPAR-related genes were affected in the fetal testes by exposure to any of the tested PEs. Furthermore, the potent PPARα agonist, Wy-14,643, did not reduce fetal testicular T production following gestational day 14-18 exposure, suggesting that the antiandrogenic activity of PEs is not PPARα mediated. The overall sensitivity of the fetal endpoints (gene expression or T production) for the six phthalates from most to least was Cyp11b1 > Star = Scarb1 > Cyp17a1 = T production > Cyp11a1 = Hsd3b = Insl3 > Cyp11b2. The overall potency of the individual phthalates was DPeP > DHP > DIBP ≥ DHeP > DINP. Finally, the observed mixture interaction was adequately modeled by the dose-addition model for most of the affected genes. Together, these data advance our understanding of the collective reproductive toxicity of the PE compounds.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk