Format
Items per page
Sort by

Send to:

Choose Destination

Results: 17

1.

Generation of differentially modified microtubules using in vitro enzymatic approaches.

Vemu A, Garnham CP, Lee DY, Roll-Mecak A.

Methods Enzymol. 2014;540:149-66. doi: 10.1016/B978-0-12-397924-7.00009-1.

PMID:
24630106
2.

Determining the ice-binding planes of antifreeze proteins by fluorescence-based ice plane affinity.

Basu K, Garnham CP, Nishimiya Y, Tsuda S, Braslavsky I, Davies P.

J Vis Exp. 2014 Jan 15;(83):e51185. doi: 10.3791/51185.

PMID:
24457629
3.

Role of Ca²⁺ in folding the tandem β-sandwich extender domains of a bacterial ice-binding adhesin.

Guo S, Garnham CP, Karunan Partha S, Campbell RL, Allingham JS, Davies PL.

FEBS J. 2013 Nov;280(22):5919-32. doi: 10.1111/febs.12518. Epub 2013 Oct 11.

PMID:
24024640
4.

Phosphinic acid-based inhibitors of tubulin polyglutamylases.

Liu Y, Garnham CP, Roll-Mecak A, Tanner ME.

Bioorg Med Chem Lett. 2013 Aug 1;23(15):4408-12. doi: 10.1016/j.bmcl.2013.05.069. Epub 2013 May 30.

5.

Re-evaluation of a bacterial antifreeze protein as an adhesin with ice-binding activity.

Guo S, Garnham CP, Whitney JC, Graham LA, Davies PL.

PLoS One. 2012;7(11):e48805. doi: 10.1371/journal.pone.0048805. Epub 2012 Nov 7.

6.

Engineering a naturally inactive isoform of type III antifreeze protein into one that can stop the growth of ice.

Garnham CP, Nishimiya Y, Tsuda S, Davies PL.

FEBS Lett. 2012 Nov 2;586(21):3876-81. doi: 10.1016/j.febslet.2012.09.017. Epub 2012 Sep 24.

7.

Ice-binding site of snow mold fungus antifreeze protein deviates from structural regularity and high conservation.

Kondo H, Hanada Y, Sugimoto H, Hoshino T, Garnham CP, Davies PL, Tsuda S.

Proc Natl Acad Sci U S A. 2012 Jun 12;109(24):9360-5. doi: 10.1073/pnas.1121607109. Epub 2012 May 29.

8.

The chemical complexity of cellular microtubules: tubulin post-translational modification enzymes and their roles in tuning microtubule functions.

Garnham CP, Roll-Mecak A.

Cytoskeleton (Hoboken). 2012 Jul;69(7):442-63. doi: 10.1002/cm.21027. Epub 2012 Apr 26. Review.

9.

Novel dimeric β-helical model of an ice nucleation protein with bridged active sites.

Garnham CP, Campbell RL, Walker VK, Davies PL.

BMC Struct Biol. 2011 Sep 27;11:36. doi: 10.1186/1472-6807-11-36.

10.

Anchored clathrate waters bind antifreeze proteins to ice.

Garnham CP, Campbell RL, Davies PL.

Proc Natl Acad Sci U S A. 2011 May 3;108(18):7363-7. doi: 10.1073/pnas.1100429108. Epub 2011 Apr 11.

11.

Compound ice-binding site of an antifreeze protein revealed by mutagenesis and fluorescent tagging.

Garnham CP, Natarajan A, Middleton AJ, Kuiper MJ, Braslavsky I, Davies PL.

Biochemistry. 2010 Oct 26;49(42):9063-71. doi: 10.1021/bi100516e.

PMID:
20853841
12.

Limb-girdle muscular dystrophy type 2A can result from accelerated autoproteolytic inactivation of calpain 3.

Garnham CP, Hanna RA, Chou JS, Low KE, Gourlay K, Campbell RL, Beckmann JS, Davies PL.

Biochemistry. 2009 Apr 21;48(15):3457-67. doi: 10.1021/bi900130u.

PMID:
19226146
13.

A Ca2+-dependent bacterial antifreeze protein domain has a novel beta-helical ice-binding fold.

Garnham CP, Gilbert JA, Hartman CP, Campbell RL, Laybourn-Parry J, Davies PL.

Biochem J. 2008 Apr 1;411(1):171-80.

14.

The basis for hyperactivity of antifreeze proteins.

Scotter AJ, Marshall CB, Graham LA, Gilbert JA, Garnham CP, Davies PL.

Cryobiology. 2006 Oct;53(2):229-39. Epub 2006 Aug 2.

PMID:
16887111
15.
16.
17.

Two-dimensional gel electrophoresis database of murine R1 embryonic stem cells.

Elliott ST, Crider DG, Garnham CP, Boheler KR, Van Eyk JE.

Proteomics. 2004 Dec;4(12):3813-32. Erratum in: Proteomics. 2004 Dec;4(12):4032. Garham, Christopher P [corrected to Garnham, Christopher P ].

PMID:
15378706
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Loading ...
Write to the Help Desk