Format

Send to:

Choose Destination
See comment in PubMed Commons below
BMC Struct Biol. 2009 Jul 22;9:47. doi: 10.1186/1472-6807-9-47.

An in silico study of the molecular basis of B-RAF activation and conformational stability.

Author information

  • 1Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Kemitorvet, Building 208, DK-2800 Kongens Lyngby, Denmark. fratev@cbs.dtu.dk

Abstract

BACKGROUND:

B-RAF kinase plays an important role both in tumour induction and maintenance in several cancers and it is an attractive new drug target. However, the structural basis of the B-RAF activation is still not well understood.

RESULTS:

In this study we suggest a novel molecular basis of B-RAF activation based on molecular dynamics (MD) simulations of B-RAFWT and the B-RAFV600E, B-RAFK601E and B-RAFD594V mutants. A strong hydrogen bond network was identified in B-RAFWT in which the interactions between Lys601 and the well known catalytic residues Lys483, Glu501 and Asp594 play an important role. It was found that several mutations, which directly or indirectly destabilized the interactions between these residues within this network, contributed to the changes in B-RAF activity.

CONCLUSION:

Our results showed that the above mechanisms lead to the disruption of the electrostatic interactions between the A-loop and the alphaC-helix in the activating mutants, which presumably contribute to the flipping of the activation segment to an active form. Conversely, in the B-RAFD594V mutant that has impaired kinase activity, and in B-RAFWT these interactions were strong and stabilized the kinase inactive form.

PMID:
19624854
[PubMed - indexed for MEDLINE]
PMCID:
PMC2731097
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Write to the Help Desk