Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 37

1.

MegaTevs: single-chain dual nucleases for efficient gene disruption.

Wolfs JM, DaSilva M, Meister SE, Wang X, Schild-Poulter C, Edgell DR.

Nucleic Acids Res. 2014 Jul;42(13):8816-29. doi: 10.1093/nar/gku573. Epub 2014 Jul 10.

2.

Control of catalytic efficiency by a coevolving network of catalytic and noncatalytic residues.

McMurrough TA, Dickson RJ, Thibert SM, Gloor GB, Edgell DR.

Proc Natl Acad Sci U S A. 2014 Jun 10;111(23):E2376-83. doi: 10.1073/pnas.1322352111. Epub 2014 May 27.

3.

Unifying the analysis of high-throughput sequencing datasets: characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis.

Fernandes AD, Reid JN, Macklaim JM, McMurrough TA, Edgell DR, Gloor GB.

Microbiome. 2014 May 5;2:15. doi: 10.1186/2049-2618-2-15. eCollection 2014.

4.

The I-TevI nuclease and linker domains contribute to the specificity of monomeric TALENs.

Kleinstiver BP, Wang L, Wolfs JM, Kolaczyk T, McDowell B, Wang X, Schild-Poulter C, Bogdanove AJ, Edgell DR.

G3 (Bethesda). 2014 Apr 16;4(6):1155-65. doi: 10.1534/g3.114.011445.

5.

Bacterial group I introns: mobile RNA catalysts.

Hausner G, Hafez M, Edgell DR.

Mob DNA. 2014 Mar 10;5(1):8. doi: 10.1186/1759-8753-5-8.

6.

Rapid screening of endonuclease target site preference using a modified bacterial two-plasmid selection.

Wolfs JM, Kleinstiver BP, Edgell DR.

Methods Mol Biol. 2014;1123:97-104. doi: 10.1007/978-1-62703-968-0_8.

PMID:
24510263
7.

The monomeric GIY-YIG homing endonuclease I-BmoI uses a molecular anchor and a flexible tether to sequentially nick DNA.

Kleinstiver BP, Wolfs JM, Edgell DR.

Nucleic Acids Res. 2013 May 1;41(10):5413-27. doi: 10.1093/nar/gkt186. Epub 2013 Apr 4.

8.

Monomeric site-specific nucleases for genome editing.

Kleinstiver BP, Wolfs JM, Kolaczyk T, Roberts AK, Hu SX, Edgell DR.

Proc Natl Acad Sci U S A. 2012 May 22;109(21):8061-6. doi: 10.1073/pnas.1117984109. Epub 2012 May 7.

9.

Divalent metal ion differentially regulates the sequential nicking reactions of the GIY-YIG homing endonuclease I-BmoI.

Kleinstiver BP, Bérubé-Janzen W, Fernandes AD, Edgell DR.

PLoS One. 2011;6(8):e23804. doi: 10.1371/journal.pone.0023804. Epub 2011 Aug 22.

10.

Tapping natural reservoirs of homing endonucleases for targeted gene modification.

Takeuchi R, Lambert AR, Mak AN, Jacoby K, Dickson RJ, Gloor GB, Scharenberg AM, Edgell DR, Stoddard BL.

Proc Natl Acad Sci U S A. 2011 Aug 9;108(32):13077-82. doi: 10.1073/pnas.1107719108. Epub 2011 Jul 22.

11.

Learning to live together: mutualism between self-splicing introns and their hosts.

Edgell DR, Chalamcharla VR, Belfort M.

BMC Biol. 2011 Apr 11;9:22. doi: 10.1186/1741-7007-9-22. Review.

12.

Estimating the evidence of selection and the reliability of inference in unigenic evolution.

Fernandes AD, Kleinstiver BP, Edgell DR, Wahl LM, Gloor GB.

Algorithms Mol Biol. 2010 Nov 8;5:35. doi: 10.1186/1748-7188-5-35.

13.

Mobile DNA elements in T4 and related phages.

Edgell DR, Gibb EA, Belfort M.

Virol J. 2010 Oct 28;7:290. doi: 10.1186/1743-422X-7-290. Review.

14.

Assembly of a fragmented ribonucleotide reductase by protein interaction domains derived from a mobile genetic element.

Crona M, Moffatt C, Friedrich NC, Hofer A, Sjöberg BM, Edgell DR.

Nucleic Acids Res. 2011 Mar;39(4):1381-9. doi: 10.1093/nar/gkq924. Epub 2010 Oct 23.

15.

Subunit and small-molecule interaction of ribonucleotide reductases via surface plasmon resonance biosensor analyses.

Crona M, Furrer E, Torrents E, Edgell DR, Sjöberg BM.

Protein Eng Des Sel. 2010 Aug;23(8):633-41. doi: 10.1093/protein/gzq035. Epub 2010 Jun 9.

16.

Better late than early: delayed translation of intron-encoded endonuclease I-TevI is required for efficient splicing of its host group I intron.

Gibb EA, Edgell DR.

Mol Microbiol. 2010 Oct;78(1):35-46. doi: 10.1111/j.1365-2958.2010.07216.x. Epub 2010 May 19.

PMID:
20497330
17.

A unified genetic, computational and experimental framework identifies functionally relevant residues of the homing endonuclease I-BmoI.

Kleinstiver BP, Fernandes AD, Gloor GB, Edgell DR.

Nucleic Acids Res. 2010 Apr;38(7):2411-27. doi: 10.1093/nar/gkp1223. Epub 2010 Jan 8.

18.

Phage T4 mobE promotes trans homing of the defunct homing endonuclease I-TevIII.

Wilson GW, Edgell DR.

Nucleic Acids Res. 2009 Nov;37(21):7110-23. doi: 10.1093/nar/gkp769. Epub .

19.

Genes within genes: multiple LAGLIDADG homing endonucleases target the ribosomal protein S3 gene encoded within an rnl group I intron of Ophiostoma and related taxa.

Sethuraman J, Majer A, Friedrich NC, Edgell DR, Hausner G.

Mol Biol Evol. 2009 Oct;26(10):2299-315. doi: 10.1093/molbev/msp145. Epub 2009 Jul 13.

20.

Selfish DNA: homing endonucleases find a home.

Edgell DR.

Curr Biol. 2009 Feb 10;19(3):R115-7. doi: 10.1016/j.cub.2008.12.019. Review.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Loading ...
Write to the Help Desk