Format
Items per page
Sort by

Send to:

Choose Destination

Results: 16

1.

An ecosystem service approach to support integrated pond management: a case study using Bayesian belief networks--highlighting opportunities and risks.

Landuyt D, Lemmens P, D'hondt R, Broekx S, Liekens I, De Bie T, Declerck SA, De Meester L, Goethals PL.

J Environ Manage. 2014 Dec 1;145:79-87. doi: 10.1016/j.jenvman.2014.06.015. Epub 2014 Jul 5.

PMID:
25005053
2.

How to maximally support local and regional biodiversity in applied conservation? Insights from pond management.

Lemmens P, Mergeay J, De Bie T, Van Wichelen J, De Meester L, Declerck SA.

PLoS One. 2013 Aug 12;8(8):e72538. doi: 10.1371/journal.pone.0072538. eCollection 2013.

3.

Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms.

De Bie T, De Meester L, Brendonck L, Martens K, Goddeeris B, Ercken D, Hampel H, Denys L, Vanhecke L, Van der Gucht K, Van Wichelen J, Vyverman W, Declerck SA.

Ecol Lett. 2012 Jul;15(7):740-7. doi: 10.1111/j.1461-0248.2012.01794.x. Epub 2012 May 15.

PMID:
22583795
4.

The structure of the EU mediasphere.

Flaounas I, Turchi M, Ali O, Fyson N, De Bie T, Mosdell N, Lewis J, Cristianini N.

PLoS One. 2010 Dec 8;5(12):e14243. doi: 10.1371/journal.pone.0014243.

5.

Land use, genetic diversity and toxicant tolerance in natural populations of Daphnia magna.

Coors A, Vanoverbeke J, De Bie T, De Meester L.

Aquat Toxicol. 2009 Oct 19;95(1):71-9. doi: 10.1016/j.aquatox.2009.08.004. Epub 2009 Aug 14.

PMID:
19747740
6.

The condition-dependent transcriptional network in Escherichia coli.

Lemmens K, De Bie T, Dhollander T, Monsieurs P, De Moor B, Collado-Vides J, Engelen K, Marchal K.

Ann N Y Acad Sci. 2009 Mar;1158:29-35. doi: 10.1111/j.1749-6632.2008.03746.x.

PMID:
19348629
7.

DISTILLER: a data integration framework to reveal condition dependency of complex regulons in Escherichia coli.

Lemmens K, De Bie T, Dhollander T, De Keersmaecker SC, Thijs IM, Schoofs G, De Weerdt A, De Moor B, Vanderleyden J, Collado-Vides J, Engelen K, Marchal K.

Genome Biol. 2009;10(3):R27. doi: 10.1186/gb-2009-10-3-r27. Epub 2009 Mar 6.

8.

ModuleDigger: an itemset mining framework for the detection of cis-regulatory modules.

Sun H, De Bie T, Storms V, Fu Q, Dhollander T, Lemmens K, Verstuyf A, De Moor B, Marchal K.

BMC Bioinformatics. 2009 Jan 30;10 Suppl 1:S30. doi: 10.1186/1471-2105-10-S1-S30.

9.

Integrating microarray and proteomics data to predict the response on cetuximab in patients with rectal cancer.

Daemen A, Gevaert O, De Bie T, Debucquoy A, Machiels JP, De Moor B, Haustermans K.

Pac Symp Biocomput. 2008:166-77.

10.

Kernel-based data fusion for gene prioritization.

De Bie T, Tranchevent LC, van Oeffelen LM, Moreau Y.

Bioinformatics. 2007 Jul 1;23(13):i125-32.

11.

The evolution of mammalian gene families.

Demuth JP, De Bie T, Stajich JE, Cristianini N, Hahn MW.

PLoS One. 2006 Dec 20;1:e85.

12.

Inferring transcriptional modules from ChIP-chip, motif and microarray data.

Lemmens K, Dhollander T, De Bie T, Monsieurs P, Engelen K, Smets B, Winderickx J, De Moor B, Marchal K.

Genome Biol. 2006;7(5):R37. Epub 2006 May 5.

13.

CAFE: a computational tool for the study of gene family evolution.

De Bie T, Cristianini N, Demuth JP, Hahn MW.

Bioinformatics. 2006 May 15;22(10):1269-71. Epub 2006 Mar 16.

14.

Estimating the tempo and mode of gene family evolution from comparative genomic data.

Hahn MW, De Bie T, Stajich JE, Nguyen C, Cristianini N.

Genome Res. 2005 Aug;15(8):1153-60.

15.

Discovering transcriptional modules from motif, chip-chip and microarray data.

De Bie T, Monsieurs P, Engelen K, De Moor B, Cristianini N, Marchal K.

Pac Symp Biocomput. 2005:483-94.

16.

A statistical framework for genomic data fusion.

Lanckriet GR, De Bie T, Cristianini N, Jordan MI, Noble WS.

Bioinformatics. 2004 Nov 1;20(16):2626-35. Epub 2004 May 6.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Loading ...
Write to the Help Desk