Format
Sort by

Send to

Choose Destination

Search results

Items: 1 to 20 of 57

1.

Mg(2+) differentially regulates two modes of mitochondrial Ca(2+) uptake in isolated cardiac mitochondria: implications for mitochondrial Ca(2+) sequestration.

Blomeyer CA, Bazil JN, Stowe DF, Dash RK, Camara AK.

J Bioenerg Biomembr. 2016 Jun;48(3):175-88. doi: 10.1007/s10863-016-9644-1. Epub 2016 Jan 27.

PMID:
26815005
2.

The Pathway for Oxygen: Tutorial Modelling on Oxygen Transport from Air to Mitochondrion: The Pathway for Oxygen.

Bassingthwaighte JB, Raymond GM, Dash RK, Beard DA, Nolan M.

Adv Exp Med Biol. 2016;876:103-10. doi: 10.1007/978-1-4939-3023-4_13.

3.

Simple accurate mathematical models of blood HbO2 and HbCO2 dissociation curves at varied physiological conditions: evaluation and comparison with other models.

Dash RK, Korman B, Bassingthwaighte JB.

Eur J Appl Physiol. 2016 Jan;116(1):97-113. doi: 10.1007/s00421-015-3228-3. Epub 2015 Aug 23.

PMID:
26298270
4.

Letter to the Editor: Mitochondrial cytochrome c oxidase: mechanism of action and role in regulating oxidative phosphorylation.

Pannala VR, Beard DA, Dash RK.

J Appl Physiol (1985). 2015 Jul 15;119(2):157. doi: 10.1152/japplphysiol.00290.2015. No abstract available.

PMID:
26177971
5.

Effects of p67phox on the mitochondrial oxidative state in the kidney of Dahl salt-sensitive rats: optical fluorescence 3-D cryoimaging.

Salehpour F, Ghanian Z, Yang C, Zheleznova NN, Kurth T, Dash RK, Cowley AW Jr, Ranji M.

Am J Physiol Renal Physiol. 2015 Aug 15;309(4):F377-82. doi: 10.1152/ajprenal.00098.2015. Epub 2015 Jun 10.

PMID:
26062875
6.

Markov chain Monte Carlo based analysis of post-translationally modified VDAC gating kinetics.

Tewari SG, Zhou Y, Otto BJ, Dash RK, Kwok WM, Beard DA.

Front Physiol. 2015 Jan 13;5:513. doi: 10.3389/fphys.2014.00513. eCollection 2014.

7.

Mechanistic characterization of the thioredoxin system in the removal of hydrogen peroxide.

Pannala VR, Dash RK.

Free Radic Biol Med. 2015 Jan;78:42-55. doi: 10.1016/j.freeradbiomed.2014.10.508. Epub 2014 Oct 29.

8.

Mitochondrial targets for volatile anesthetics against cardiac ischemia-reperfusion injury.

Agarwal B, Stowe DF, Dash RK, Bosnjak ZJ, Camara AK.

Front Physiol. 2014 Sep 16;5:341. doi: 10.3389/fphys.2014.00341. eCollection 2014. Review.

9.

Determining the origins of superoxide and hydrogen peroxide in the mammalian NADH:ubiquinone oxidoreductase.

Bazil JN, Pannala VR, Dash RK, Beard DA.

Free Radic Biol Med. 2014 Dec;77:121-9. doi: 10.1016/j.freeradbiomed.2014.08.023. Epub 2014 Sep 16.

10.

Computational analysis of Ca2+ dynamics in isolated cardiac mitochondria predicts two distinct modes of Ca2+ uptake.

Tewari SG, Camara AK, Stowe DF, Dash RK.

J Physiol. 2014 May 1;592(9):1917-30. doi: 10.1113/jphysiol.2013.268847. Epub 2014 Mar 3.

11.

A mechanistic mathematical model for the catalytic action of glutathione peroxidase.

Pannala VR, Bazil JN, Camara AK, Dash RK.

Free Radic Res. 2014 Apr;48(4):487-502. doi: 10.3109/10715762.2014.886775. Epub 2014 Feb 24.

12.

Isoflurane modulates cardiac mitochondrial bioenergetics by selectively attenuating respiratory complexes.

Agarwal B, Dash RK, Stowe DF, Bosnjak ZJ, Camara AK.

Biochim Biophys Acta. 2014 Mar;1837(3):354-65. doi: 10.1016/j.bbabio.2013.11.006. Epub 2013 Dec 17.

13.

Effect of P2X4 and P2X7 receptor antagonism on the pressure diuresis relationship in rats.

Menzies RI, Unwin RJ, Dash RK, Beard DA, Cowley AW Jr, Carlson BE, Mullins JJ, Bailey MA.

Front Physiol. 2013 Oct 25;4:305. doi: 10.3389/fphys.2013.00305. eCollection 2013.

14.

A biophysically based mathematical model for the catalytic mechanism of glutathione reductase.

Pannala VR, Bazil JN, Camara AK, Dash RK.

Free Radic Biol Med. 2013 Dec;65:1385-97. doi: 10.1016/j.freeradbiomed.2013.10.001. Epub 2013 Oct 9.

15.

An online model composition tool for system biology models.

Coskun SA, Cicek AE, Lai N, Dash RK, Ozsoyoglu ZM, Ozsoyoglu G.

BMC Syst Biol. 2013 Sep 5;7:88. doi: 10.1186/1752-0509-7-88.

16.

Extra-matrix Mg2+ limits Ca2+ uptake and modulates Ca2+ uptake-independent respiration and redox state in cardiac isolated mitochondria.

Boelens AD, Pradhan RK, Blomeyer CA, Camara AK, Dash RK, Stowe DF.

J Bioenerg Biomembr. 2013 Jun;45(3):203-18. doi: 10.1007/s10863-013-9500-5. Epub 2013 Mar 3.

17.

Dynamic buffering of mitochondrial Ca2+ during Ca2+ uptake and Na+-induced Ca2+ release.

Blomeyer CA, Bazil JN, Stowe DF, Pradhan RK, Dash RK, Camara AK.

J Bioenerg Biomembr. 2013 Jun;45(3):189-202. doi: 10.1007/s10863-012-9483-7. Epub 2012 Dec 7.

18.

Modeling the calcium sequestration system in isolated guinea pig cardiac mitochondria.

Bazil JN, Blomeyer CA, Pradhan RK, Camara AK, Dash RK.

J Bioenerg Biomembr. 2013 Jun;45(3):177-88. doi: 10.1007/s10863-012-9488-2. Epub 2012 Nov 22.

19.

A biophysical model of the mitochondrial ATP-Mg/P(i) carrier.

Tewari SG, Dash RK, Beard DA, Bazil JN.

Biophys J. 2012 Oct 3;103(7):1616-25. doi: 10.1016/j.bpj.2012.08.050. Epub 2012 Oct 2.

20.

Mitochondrial handling of excess Ca2+ is substrate-dependent with implications for reactive oxygen species generation.

Aldakkak M, Stowe DF, Dash RK, Camara AK.

Free Radic Biol Med. 2013 Mar;56:193-203. doi: 10.1016/j.freeradbiomed.2012.09.020. Epub 2012 Sep 23.

Items per page

Supplemental Content

Write to the Help Desk