Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 80

1.

Development and use of bioenergy feedstocks for semi-arid and arid lands.

Cushman JC, Davis SC, Yang X, Borland AM.

J Exp Bot. 2015 Apr 1. pii: erv087. [Epub ahead of print] Review.

PMID:
25873672
2.

Climate-resilient agroforestry: physiological responses to climate change and engineering of crassulacean acid metabolism (CAM) as a mitigation strategy.

Borland AM, Wullschleger SD, Weston DJ, Hartwell J, Tuskan GA, Yang X, Cushman JC.

Plant Cell Environ. 2014 Nov 4. doi: 10.1111/pce.12479. [Epub ahead of print]

PMID:
25366937
3.

Multiple isoforms of phosphoenolpyruvate carboxylase in the Orchidaceae (subtribe Oncidiinae): implications for the evolution of crassulacean acid metabolism.

Silvera K, Winter K, Rodriguez BL, Albion RL, Cushman JC.

J Exp Bot. 2014 Jul;65(13):3623-36. doi: 10.1093/jxb/eru234. Epub 2014 Jun 9.

4.

Interview with John C. Cushman.

Cushman JC.

Trends Plant Sci. 2014 May;19(5):274-5. doi: 10.1016/j.tplants.2014.03.003. Epub 2014 Apr 4. No abstract available.

PMID:
24704186
5.

Synthetic biology as it relates to CAM photosynthesis: challenges and opportunities.

DePaoli HC, Borland AM, Tuskan GA, Cushman JC, Yang X.

J Exp Bot. 2014 Jul;65(13):3381-93. doi: 10.1093/jxb/eru038. Epub 2014 Feb 24. Review.

PMID:
24567493
6.

Engineering crassulacean acid metabolism to improve water-use efficiency.

Borland AM, Hartwell J, Weston DJ, Schlauch KA, Tschaplinski TJ, Tuskan GA, Yang X, Cushman JC.

Trends Plant Sci. 2014 May;19(5):327-38. doi: 10.1016/j.tplants.2014.01.006. Epub 2014 Feb 19. Review.

PMID:
24559590
7.

Metabolic rates associated with membrane fatty acids in mice selected for increased maximal metabolic rate.

Wone BW, Donovan ER, Cushman JC, Hayes JP.

Comp Biochem Physiol A Mol Integr Physiol. 2013 May;165(1):70-8. doi: 10.1016/j.cbpa.2013.02.010. Epub 2013 Feb 16.

8.

Metabolomic profiling in Selaginella lepidophylla at various hydration states provides new insights into the mechanistic basis of desiccation tolerance.

Yobi A, Wone BW, Xu W, Alexander DC, Guo L, Ryals JA, Oliver MJ, Cushman JC.

Mol Plant. 2013 Mar;6(2):369-85. doi: 10.1093/mp/sss155. Epub 2012 Dec 13.

9.

Comparative metabolic profiling between desiccation-sensitive and desiccation-tolerant species of Selaginella reveals insights into the resurrection trait.

Yobi A, Wone BW, Xu W, Alexander DC, Guo L, Ryals JA, Oliver MJ, Cushman JC.

Plant J. 2012 Dec;72(6):983-99. doi: 10.1111/tpj.12008. Epub 2012 Oct 19.

PMID:
23061970
10.
11.

The Vitis vinifera C-repeat binding protein 4 (VvCBF4) transcriptional factor enhances freezing tolerance in wine grape.

Tillett RL, Wheatley MD, Tattersall EA, Schlauch KA, Cramer GR, Cushman JC.

Plant Biotechnol J. 2012 Jan;10(1):105-24. doi: 10.1111/j.1467-7652.2011.00648.x. Epub 2011 Sep 13.

12.

Expressed sequence tag (EST) profiling in hyper saline shocked Dunaliella salina reveals high expression of protein synthetic apparatus components.

Alkayal F, Albion RL, Tillett RL, Hathwaik LT, Lemos MS, Cushman JC.

Plant Sci. 2010 Nov;179(5):437-49. doi: 10.1016/j.plantsci.2010.07.001. Epub 2010 Jul 14.

PMID:
21802602
13.

Identification of tissue-specific, abiotic stress-responsive gene expression patterns in wine grape (Vitis vinifera L.) based on curation and mining of large-scale EST data sets.

Tillett RL, Ergül A, Albion RL, Schlauch KA, Cramer GR, Cushman JC.

BMC Plant Biol. 2011 May 18;11:86. doi: 10.1186/1471-2229-11-86.

14.

A sister group contrast using untargeted global metabolomic analysis delineates the biochemical regulation underlying desiccation tolerance in Sporobolus stapfianus.

Oliver MJ, Guo L, Alexander DC, Ryals JA, Wone BW, Cushman JC.

Plant Cell. 2011 Apr;23(4):1231-48. doi: 10.1105/tpc.110.082800. Epub 2011 Apr 5.

15.

Calcium-dependent protein kinases from Arabidopsis show substrate specificity differences in an analysis of 103 substrates.

Curran A, Chang IF, Chang CL, Garg S, Miguel RM, Barron YD, Li Y, Romanowsky S, Cushman JC, Gribskov M, Harmon AC, Harper JF.

Front Plant Sci. 2011 Aug 30;2:36. doi: 10.3389/fpls.2011.00036. eCollection 2011.

16.

Water deficit increases stilbene metabolism in Cabernet Sauvignon berries.

Deluc LG, Decendit A, Papastamoulis Y, Mérillon JM, Cushman JC, Cramer GR.

J Agric Food Chem. 2011 Jan 12;59(1):289-97. doi: 10.1021/jf1024888. Epub 2010 Dec 3.

17.

The Dunaliella salina organelle genomes: large sequences, inflated with intronic and intergenic DNA.

Smith DR, Lee RW, Cushman JC, Magnuson JK, Tran D, Polle JE.

BMC Plant Biol. 2010 May 7;10:83. doi: 10.1186/1471-2229-10-83.

18.

Dehydration tolerance in plants.

Oliver MJ, Cushman JC, Koster KL.

Methods Mol Biol. 2010;639:3-24. doi: 10.1007/978-1-60761-702-0_1.

PMID:
20387037
19.

Proteomic profiling of tandem affinity purified 14-3-3 protein complexes in Arabidopsis thaliana.

Chang IF, Curran A, Woolsey R, Quilici D, Cushman JC, Mittler R, Harmon A, Harper JF.

Proteomics. 2009 Jun;9(11):2967-85. doi: 10.1002/pmic.200800445.

20.

Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay.

Deluc LG, Quilici DR, Decendit A, Grimplet J, Wheatley MD, Schlauch KA, Mérillon JM, Cushman JC, Cramer GR.

BMC Genomics. 2009 May 8;10:212. doi: 10.1186/1471-2164-10-212.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Loading ...
Write to the Help Desk