Format
Sort by

Send to

Choose Destination

Search results

Items: 1 to 20 of 85

1.

A Synthetic Ecology Perspective: How Well Does Behavior of Model Organisms in the Laboratory Predict Microbial Activities in Natural Habitats?

Yu Z, Krause SM, Beck DA, Chistoserdova L.

Front Microbiol. 2016 Jun 15;7:946. doi: 10.3389/fmicb.2016.00946. eCollection 2016.

2.

Lanthanides: New life metals?

Chistoserdova L.

World J Microbiol Biotechnol. 2016 Aug;32(8):138. doi: 10.1007/s11274-016-2088-2. Epub 2016 Jun 29. Review.

PMID:
27357406
3.

Methylotrophs in natural habitats: current insights through metagenomics.

Chistoserdova L.

Appl Microbiol Biotechnol. 2015 Jul;99(14):5763-79. doi: 10.1007/s00253-015-6713-z. Epub 2015 Jun 9. Review.

PMID:
26051673
4.

Draft genome sequences of gammaproteobacterial methanotrophs isolated from lake washington sediment.

Kalyuzhnaya MG, Lamb AE, McTaggart TL, Oshkin IY, Shapiro N, Woyke T, Chistoserdova L.

Genome Announc. 2015 Mar 12;3(2). pii: e00103-15. doi: 10.1128/genomeA.00103-15.

5.

Oxygen availability is a major factor in determining the composition of microbial communities involved in methane oxidation.

Hernandez ME, Beck DA, Lidstrom ME, Chistoserdova L.

PeerJ. 2015 Feb 24;3:e801. doi: 10.7717/peerj.801. eCollection 2015.

6.

Draft genomes of two strains of flavobacterium isolated from lake washington sediment.

McTaggart TL, Shapiro N, Woyke T, Chistoserdova L.

Genome Announc. 2015 Feb 19;3(1). pii: e01597-14. doi: 10.1128/genomeA.01597-14.

7.

Draft Genome of Pseudomonas sp. Strain 11/12A, Isolated from Lake Washington Sediment.

McTaggart TL, Shapiro N, Woyke T, Chistoserdova L.

Genome Announc. 2015 Feb 19;3(1). pii: e01587-14. doi: 10.1128/genomeA.01587-14.

8.

Multiphyletic origins of methylotrophy in Alphaproteobacteria, exemplified by comparative genomics of Lake Washington isolates.

Beck DA, McTaggart TL, Setboonsarng U, Vorobev A, Goodwin L, Shapiro N, Woyke T, Kalyuzhnaya MG, Lidstrom ME, Chistoserdova L.

Environ Microbiol. 2015 Mar;17(3):547-54. doi: 10.1111/1462-2920.12736. Epub 2015 Feb 11.

PMID:
25683159
9.

Draft Genome of Janthinobacterium sp. RA13 Isolated from Lake Washington Sediment.

McTaggart TL, Shapiro N, Woyke T, Chistoserdova L.

Genome Announc. 2015 Feb 12;3(1). pii: e01588-14. doi: 10.1128/genomeA.01588-14.

10.

Draft genome sequences of five new strains of methylophilaceae isolated from lake washington sediment.

McTaggart TL, Benuska G, Shapiro N, Woyke T, Chistoserdova L.

Genome Announc. 2015 Feb 5;3(1). pii: e01511-14. doi: 10.1128/genomeA.01511-14.

11.

Methane-fed microbial microcosms show differential community dynamics and pinpoint taxa involved in communal response.

Oshkin IY, Beck DA, Lamb AE, Tchesnokova V, Benuska G, McTaggart TL, Kalyuzhnaya MG, Dedysh SN, Lidstrom ME, Chistoserdova L.

ISME J. 2015 May;9(5):1119-29. doi: 10.1038/ismej.2014.203. Epub 2014 Oct 21.

12.

The expanded diversity of methylophilaceae from Lake Washington through cultivation and genomic sequencing of novel ecotypes.

Beck DA, McTaggart TL, Setboonsarng U, Vorobev A, Kalyuzhnaya MG, Ivanova N, Goodwin L, Woyke T, Lidstrom ME, Chistoserdova L.

PLoS One. 2014 Jul 24;9(7):e102458. doi: 10.1371/journal.pone.0102458. eCollection 2014.

13.

Is metagenomics resolving identification of functions in microbial communities?

Chistoserdova L.

Microb Biotechnol. 2014 Jan;7(1):1-4. doi: 10.1111/1751-7915.12077. Epub 2013 Aug 15.

14.

Comparative transcriptomics in three Methylophilaceae species uncover different strategies for environmental adaptation.

Vorobev A, Beck DA, Kalyuzhnaya MG, Lidstrom ME, Chistoserdova L.

PeerJ. 2013 Jul 25;1:e115. doi: 10.7717/peerj.115. Print 2013.

15.

A metagenomic insight into freshwater methane-utilizing communities and evidence for cooperation between the Methylococcaceae and the Methylophilaceae.

Beck DA, Kalyuzhnaya MG, Malfatti S, Tringe SG, Glavina Del Rio T, Ivanova N, Lidstrom ME, Chistoserdova L.

PeerJ. 2013 Feb 19;1:e23. doi: 10.7717/peerj.23. Print 2013.

16.

Insights into denitrification in Methylotenera mobilis from denitrification pathway and methanol metabolism mutants.

Mustakhimov I, Kalyuzhnaya MG, Lidstrom ME, Chistoserdova L.

J Bacteriol. 2013 May;195(10):2207-11. doi: 10.1128/JB.00069-13. Epub 2013 Mar 8.

17.

Complete genome sequences of six strains of the genus Methylobacterium.

Marx CJ, Bringel F, Chistoserdova L, Moulin L, Farhan Ul Haque M, Fleischman DE, Gruffaz C, Jourand P, Knief C, Lee MC, Muller EE, Nadalig T, Peyraud R, Roselli S, Russ L, Goodwin LA, Ivanova N, Kyrpides N, Lajus A, Land ML, M├ędigue C, Mikhailova N, Nolan M, Woyke T, Stolyar S, Vorholt JA, Vuilleumier S.

J Bacteriol. 2012 Sep;194(17):4746-8. doi: 10.1128/JB.01009-12.

18.

An integrated proteomics/transcriptomics approach points to oxygen as the main electron sink for methanol metabolism in Methylotenera mobilis.

Beck DA, Hendrickson EL, Vorobev A, Wang T, Lim S, Kalyuzhnaya MG, Lidstrom ME, Hackett M, Chistoserdova L.

J Bacteriol. 2011 Sep;193(18):4758-65. doi: 10.1128/JB.05375-11. Epub 2011 Jul 15.

19.

Methylotrophy in a lake: from metagenomics to single-organism physiology.

Chistoserdova L.

Appl Environ Microbiol. 2011 Jul;77(14):4705-11. doi: 10.1128/AEM.00314-11. Epub 2011 May 27. Review.

20.

Genomes of three methylotrophs from a single niche reveal the genetic and metabolic divergence of the methylophilaceae.

Lapidus A, Clum A, Labutti K, Kaluzhnaya MG, Lim S, Beck DA, Glavina Del Rio T, Nolan M, Mavromatis K, Huntemann M, Lucas S, Lidstrom ME, Ivanova N, Chistoserdova L.

J Bacteriol. 2011 Aug;193(15):3757-64. doi: 10.1128/JB.00404-11. Epub 2011 May 27.

Items per page

Supplemental Content

Loading ...
Write to the Help Desk