Format
Items per page
Sort by

Send to:

Choose Destination

Results: 20

1.

Combined effects of nutrients and temperature on the production of fermentative aromas by Saccharomyces cerevisiae during wine fermentation.

Rollero S, Bloem A, Camarasa C, Sanchez I, Ortiz-Julien A, Sablayrolles JM, Dequin S, Mouret JR.

Appl Microbiol Biotechnol. 2015 Mar;99(5):2291-304. doi: 10.1007/s00253-014-6210-9. Epub 2014 Nov 21.

PMID:
25412578
2.

Efficient ammonium uptake and mobilization of vacuolar arginine by Saccharomyces cerevisiae wine strains during wine fermentation.

Crépin L, Sanchez I, Nidelet T, Dequin S, Camarasa C.

Microb Cell Fact. 2014 Aug 19;13:109. doi: 10.1186/s12934-014-0109-0.

3.

[Ataxia with ophthalmoplegia: Miller-Fisher syndrome with anti-GQ1b antibody positivity].

Guilloton L, Camarasa C, Agard E, Tondeur G, Dot C, Drouet A.

J Fr Ophtalmol. 2014 Feb;37(2):89-92. doi: 10.1016/j.jfo.2013.05.026. Epub 2014 Feb 7. French.

PMID:
24513384
4.

Metabolic responses of Saccharomyces cerevisiae to valine and ammonium pulses during four-stage continuous wine fermentations.

Clement T, Perez M, Mouret JR, Sanchez I, Sablayrolles JM, Camarasa C.

Appl Environ Microbiol. 2013 Apr;79(8):2749-58. doi: 10.1128/AEM.02853-12. Epub 2013 Feb 15.

5.

Sequential use of nitrogen compounds by Saccharomyces cerevisiae during wine fermentation: a model based on kinetic and regulation characteristics of nitrogen permeases.

Crépin L, Nidelet T, Sanchez I, Dequin S, Camarasa C.

Appl Environ Microbiol. 2012 Nov;78(22):8102-11. doi: 10.1128/AEM.02294-12. Epub 2012 Sep 14.

6.

A comparative transcriptomic, fluxomic and metabolomic analysis of the response of Saccharomyces cerevisiae to increases in NADPH oxidation.

Celton M, Sanchez I, Goelzer A, Fromion V, Camarasa C, Dequin S.

BMC Genomics. 2012 Jul 17;13:317. doi: 10.1186/1471-2164-13-317.

7.

A constraint-based model analysis of the metabolic consequences of increased NADPH oxidation in Saccharomyces cerevisiae.

Celton M, Goelzer A, Camarasa C, Fromion V, Dequin S.

Metab Eng. 2012 Jul;14(4):366-79. doi: 10.1016/j.ymben.2012.03.008. Epub 2012 Mar 26.

PMID:
22709677
8.

Phenotypic landscape of Saccharomyces cerevisiae during wine fermentation: evidence for origin-dependent metabolic traits.

Camarasa C, Sanchez I, Brial P, Bigey F, Dequin S.

PLoS One. 2011;6(9):e25147. doi: 10.1371/journal.pone.0025147. Epub 2011 Sep 16.

9.

Use of a continuous multistage bioreactor to mimic winemaking fermentation.

Clement T, Perez M, Mouret JR, Sablayrolles JM, Camarasa C.

Int J Food Microbiol. 2011 Oct 17;150(1):42-9. doi: 10.1016/j.ijfoodmicro.2011.07.016. Epub 2011 Jul 27.

PMID:
21839532
10.

Evolutionary engineered Saccharomyces cerevisiae wine yeast strains with increased in vivo flux through the pentose phosphate pathway.

Cadière A, Ortiz-Julien A, Camarasa C, Dequin S.

Metab Eng. 2011 May;13(3):263-71. doi: 10.1016/j.ymben.2011.01.008. Epub 2011 Feb 23.

PMID:
21300171
11.

New insights into {gamma}-aminobutyric acid catabolism: Evidence for {gamma}-hydroxybutyric acid and polyhydroxybutyrate synthesis in Saccharomyces cerevisiae.

Bach B, Meudec E, Lepoutre JP, Rossignol T, Blondin B, Dequin S, Camarasa C.

Appl Environ Microbiol. 2009 Jul;75(13):4231-9. doi: 10.1128/AEM.00051-09. Epub 2009 May 1.

12.
13.

Effects of GPD1 overexpression in Saccharomyces cerevisiae commercial wine yeast strains lacking ALD6 genes.

Cambon B, Monteil V, Remize F, Camarasa C, Dequin S.

Appl Environ Microbiol. 2006 Jul;72(7):4688-94.

15.

Characterization of Schizosaccharomyces pombe malate permease by expression in Saccharomyces cerevisiae.

Camarasa C, Bidard F, Bony M, Barre P, Dequin S.

Appl Environ Microbiol. 2001 Sep;67(9):4144-51.

16.
17.

Anaerobic pathways of glycerol dissimilation by Enterobacter agglomerans CNCM 1210: limitations and regulations.

Barbirato F, Astruc S, Soucaille P, Camarasa C, Salmon JM, Bories A.

Microbiology. 1997 Jul;143 ( Pt 7):2423-32.

18.

Metabolic analysis of S. cerevisiae strains engineered for malolactic fermentation.

Bony M, Bidart F, Camarasa C, Ansanay V, Dulau L, Barre P, Dequin S.

FEBS Lett. 1997 Jun 30;410(2-3):452-6.

19.

Evidence for a selective and electroneutral K+/H(+)-exchange in Saccharomyces cerevisiae using plasma membrane vesicles.

Camarasa C, Prieto S, Ros R, Salmon JM, Barre P.

Yeast. 1996 Oct;12(13):1301-13.

PMID:
8923735
20.

Malolactic fermentation by engineered Saccharomyces cerevisiae as compared with engineered Schizosaccharomyces pombe.

Ansanay V, Dequin S, Camarasa C, Schaeffer V, Grivet JP, Blondin B, Salmon JM, Barre P.

Yeast. 1996 Mar 15;12(3):215-25.

PMID:
8904333
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Loading ...
Write to the Help Desk