Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 81

1.

Development of a Novel, Orthosteric M5 Antagonist Possessing a High Degree of Muscarinic Subtype Selectivity.

Gentry PR, Kokubo M, Bridges TM, Daniels JS, Niswender CM, Smith E, Chase P, Hodder PS, Rosen H, Conn PJ, Engers J, Brewer KA, Wood MR, Lindsley CW.

Probe Reports from the NIH Molecular Libraries Program [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2010-.
2013 Dec 15 [updated 2015 Feb 11].

2.

Development of the First CNS penetrant M5 Positive Allosteric Modulator (PAM) Based on a Novel, non-Isatin Core.

Gentry PR, Kokubo M, Bridges TM, Daniels JS, Niswender CM, Smith E, Chase P, Hodder PS, Rosen H, Conn PJ, Engers J, Brewer KA, Lindsley CW, Wood MR.

Probe Reports from the NIH Molecular Libraries Program [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2010-.
2013 Dec 15 [updated 2015 Feb 11].

3.

Discovery and SAR of novel series of imidazopyrimidinones and dihydroimidazopyrimidinones as positive allosteric modulators of the metabotropic glutamate receptor 5 (mGlu5).

Martín-Martín ML, Bartolomé-Nebreda JM, Conde-Ceide S, Alonso de Diego SA, López S, Martínez-Viturro CM, Tong HM, Lavreysen H, Macdonald GJ, Steckler T, Mackie C, Bridges TM, Daniels JS, Niswender CM, Noetzel MJ, Jones CK, Conn PJ, Lindsley CW, Stauffer SR.

Bioorg Med Chem Lett. 2015 Mar 15;25(6):1310-7. doi: 10.1016/j.bmcl.2015.01.038. Epub 2015 Jan 28.

PMID:
25683622
4.

Structural mechanism of laforin function in glycogen dephosphorylation and lafora disease.

Raththagala M, Brewer MK, Parker MW, Sherwood AR, Wong BK, Hsu S, Bridges TM, Paasch BC, Hellman LM, Husodo S, Meekins DA, Taylor AO, Turner BD, Auger KD, Dukhande VV, Chakravarthy S, Sanz P, Woods VL Jr, Li S, Vander Kooi CW, Gentry MS.

Mol Cell. 2015 Jan 22;57(2):261-72. doi: 10.1016/j.molcel.2014.11.020. Epub 2014 Dec 24.

PMID:
25544560
5.

Further optimization of the M5 NAM MLPCN probe ML375: tactics and challenges.

Kurata H, Gentry PR, Kokubo M, Cho HP, Bridges TM, Niswender CM, Byers FW, Wood MR, Daniels JS, Conn PJ, Lindsley CW.

Bioorg Med Chem Lett. 2015 Feb 1;25(3):690-4. doi: 10.1016/j.bmcl.2014.11.082. Epub 2014 Dec 13.

PMID:
25542588
6.

Development of the First Potent, Selective and CNS penetrant M5 Negative Allosteric Modulator (NAM).

Gentry PR, Kokubo M, Bridges TM, Daniels JS, Niswender CM, Smith E, Chase P, Hodder PS, Rosen H, Conn PJ, Engers J, Brewer KA, Wood MR, Lindsley CW.

Probe Reports from the NIH Molecular Libraries Program [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2010-.
2013 Dec 09 [updated 2014 Sep 18].

7.

Use of a novel rapid and resource-efficient cassette dosing approach to determine the pharmacokinetics and CNS distribution of small molecule 7-transmembrane receptor allosteric modulators in rat.

Bridges TM, Morrison RD, Byers FW, Luo S, Scott Daniels J.

Pharmacol Res Perspect. 2014 Dec;2(6):e00077. doi: 10.1002/prp2.77. Epub 2014 Sep 1.

8.

Development of a highly potent, novel M5 positive allosteric modulator (PAM) demonstrating CNS exposure: 1-((1H-indazol-5-yl)sulfoneyl)-N-ethyl-N-(2-(trifluoromethyl)benzyl)piperidine-4-carboxamide (ML380).

Gentry PR, Kokubo M, Bridges TM, Noetzel MJ, Cho HP, Lamsal A, Smith E, Chase P, Hodder PS, Niswender CM, Daniels JS, Conn PJ, Lindsley CW, Wood MR.

J Med Chem. 2014 Sep 25;57(18):7804-10. doi: 10.1021/jm500995y. Epub 2014 Sep 3.

PMID:
25147929
9.

Selective activation of M4 muscarinic acetylcholine receptors reverses MK-801-induced behavioral impairments and enhances associative learning in rodents.

Bubser M, Bridges TM, Dencker D, Gould RW, Grannan M, Noetzel MJ, Lamsal A, Niswender CM, Daniels JS, Poslusney MS, Melancon BJ, Tarr JC, Byers FW, Wess J, Duggan ME, Dunlop J, Wood MW, Brandon NJ, Wood MR, Lindsley CW, Conn PJ, Jones CK.

ACS Chem Neurosci. 2014 Oct 15;5(10):920-42. doi: 10.1021/cn500128b. Epub 2014 Aug 19.

PMID:
25137629
10.

Polymorphisms in human heat shock factor-1 and analysis of potential biological consequences.

Bridges TM, Scheraga RG, Tulapurkar ME, Suffredini D, Liggett SB, Ramarathnam A, Potla R, Singh IS, Hasday JD.

Cell Stress Chaperones. 2015 Jan;20(1):47-59. doi: 10.1007/s12192-014-0524-5. Epub 2014 Jul 16.

PMID:
25023647
11.

Discovery and SAR of a novel series of metabotropic glutamate receptor 5 positive allosteric modulators with high ligand efficiency.

Turlington M, Noetzel MJ, Bridges TM, Vinson PN, Steckler T, Lavreysen H, Mackie C, Bartolomé-Nebreda JM, Conde-Ceide S, Tong HM, Macdonald GJ, Daniels JS, Jones CK, Niswender CM, Conn PJ, Lindsley CW, Stauffer SR.

Bioorg Med Chem Lett. 2014 Aug 1;24(15):3641-6. doi: 10.1016/j.bmcl.2014.04.087. Epub 2014 May 2.

PMID:
24961642
12.

Discovery, synthesis and characterization of a highly muscarinic acetylcholine receptor (mAChR)-selective M5-orthosteric antagonist, VU0488130 (ML381): a novel molecular probe.

Gentry PR, Kokubo M, Bridges TM, Cho HP, Smith E, Chase P, Hodder PS, Utley TJ, Rajapakse A, Byers F, Niswender CM, Morrison RD, Daniels JS, Wood MR, Conn PJ, Lindsley CW.

ChemMedChem. 2014 Aug;9(8):1677-82. doi: 10.1002/cmdc.201402051. Epub 2014 Apr 1.

PMID:
24692176
13.

M5 receptor activation produces opposing physiological outcomes in dopamine neurons depending on the receptor's location.

Foster DJ, Gentry PR, Lizardi-Ortiz JE, Bridges TM, Wood MR, Niswender CM, Sulzer D, Lindsley CW, Xiang Z, Conn PJ.

J Neurosci. 2014 Feb 26;34(9):3253-62. doi: 10.1523/JNEUROSCI.4896-13.2014.

14.

Antipsychotic drug-like effects of the selective M4 muscarinic acetylcholine receptor positive allosteric modulator VU0152100.

Byun NE, Grannan M, Bubser M, Barry RL, Thompson A, Rosanelli J, Gowrishankar R, Kelm ND, Damon S, Bridges TM, Melancon BJ, Tarr JC, Brogan JT, Avison MJ, Deutch AY, Wess J, Wood MR, Lindsley CW, Gore JC, Conn PJ, Jones CK.

Neuropsychopharmacology. 2014 Jun;39(7):1578-93. doi: 10.1038/npp.2014.2. Epub 2014 Jan 20.

PMID:
24442096
15.

Discovery of the first M5-selective and CNS penetrant negative allosteric modulator (NAM) of a muscarinic acetylcholine receptor: (S)-9b-(4-chlorophenyl)-1-(3,4-difluorobenzoyl)-2,3-dihydro-1H-imidazo[2,1-a]isoindol-5(9bH)-one (ML375).

Gentry PR, Kokubo M, Bridges TM, Kett NR, Harp JM, Cho HP, Smith E, Chase P, Hodder PS, Niswender CM, Daniels JS, Conn PJ, Wood MR, Lindsley CW.

J Med Chem. 2013 Nov 27;56(22):9351-5. doi: 10.1021/jm4013246. Epub 2013 Nov 13.

16.

Exploration of allosteric agonism structure-activity relationships within an acetylene series of metabotropic glutamate receptor 5 (mGlu5) positive allosteric modulators (PAMs): discovery of 5-((3-fluorophenyl)ethynyl)-N-(3-methyloxetan-3-yl)picolinamide (ML254).

Turlington M, Noetzel MJ, Chun A, Zhou Y, Gogliotti RD, Nguyen ED, Gregory KJ, Vinson PN, Rook JM, Gogi KK, Xiang Z, Bridges TM, Daniels JS, Jones C, Niswender CM, Meiler J, Conn PJ, Lindsley CW, Stauffer SR.

J Med Chem. 2013 Oct 24;56(20):7976-96. doi: 10.1021/jm401028t. Epub 2013 Oct 9.

17.

Identification of a glycine sulfonamide based non-MPEP site positive allosteric potentiator (PAM) of mGlu5.

Rodriguez AL, Tarr JC, Zhou Y, Williams R, Gregory KJ, Bridges TM, Daniels JS, Niswender CM, Conn PJ, Lindsley CW, Stauffer SR.

Probe Reports from the NIH Molecular Libraries Program [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2010-.
2012 Dec 17 [updated 2013 Mar 22].

18.

Heterotropic activation of the midazolam hydroxylase activity of CYP3A by a positive allosteric modulator of mGlu5: in vitro to in vivo translation and potential impact on clinically relevant drug-drug interactions.

Blobaum AL, Bridges TM, Byers FW, Turlington ML, Mattmann ME, Morrison RD, Mackie C, Lavreysen H, Bartolomé JM, Macdonald GJ, Steckler T, Jones CK, Niswender CM, Conn PJ, Lindsley CW, Stauffer SR, Daniels JS.

Drug Metab Dispos. 2013 Dec;41(12):2066-75. doi: 10.1124/dmd.113.052662. Epub 2013 Sep 3.

19.

N-aryl piperazine metabotropic glutamate receptor 5 positive allosteric modulators possess efficacy in preclinical models of NMDA hypofunction and cognitive enhancement.

Gregory KJ, Herman EJ, Ramsey AJ, Hammond AS, Byun NE, Stauffer SR, Manka JT, Jadhav S, Bridges TM, Weaver CD, Niswender CM, Steckler T, Drinkenburg WH, Ahnaou A, Lavreysen H, Macdonald GJ, Bartolomé JM, Mackie C, Hrupka BJ, Caron MG, Daigle TL, Lindsley CW, Conn PJ, Jones CK.

J Pharmacol Exp Ther. 2013 Nov;347(2):438-57. doi: 10.1124/jpet.113.206623. Epub 2013 Aug 21.

20.

Dimerization of the glucan phosphatase laforin requires the participation of cysteine 329.

Sánchez-Martín P, Raththagala M, Bridges TM, Husodo S, Gentry MS, Sanz P, Romá-Mateo C.

PLoS One. 2013 Jul 26;8(7):e69523. doi: 10.1371/journal.pone.0069523. Print 2013.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Loading ...
Write to the Help Desk