Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 411

1.

Lasker∼Koshland to genetics pioneer.

Botstein D.

Cell. 2014 Sep 11;158(6):1230-2. doi: 10.1016/j.cell.2014.08.020.

PMID:
25215481
2.

Synthetic biology tools for programming gene expression without nutritional perturbations in Saccharomyces cerevisiae.

McIsaac RS, Gibney PA, Chandran SS, Benjamin KR, Botstein D.

Nucleic Acids Res. 2014 Apr;42(6):e48. doi: 10.1093/nar/gkt1402. Epub 2014 Jan 20.

3.

Rapid synthesis and screening of chemically activated transcription factors with GFP-based reporters.

McIsaac RS, Oakes BL, Botstein D, Noyes MB.

J Vis Exp. 2013 Nov 26;(81):e51153. doi: 10.3791/51153.

4.

Yeast metabolic and signaling genes are required for heat-shock survival and have little overlap with the heat-induced genes.

Gibney PA, Lu C, Caudy AA, Hess DC, Botstein D.

Proc Natl Acad Sci U S A. 2013 Nov 12;110(46):E4393-402. doi: 10.1073/pnas.1318100110. Epub 2013 Oct 28.

5.

Pervasive genetic hitchhiking and clonal interference in forty evolving yeast populations.

Lang GI, Rice DP, Hickman MJ, Sodergren E, Weinstock GM, Botstein D, Desai MM.

Nature. 2013 Aug 29;500(7464):571-4. doi: 10.1038/nature12344. Epub 2013 Jul 21.

6.

A new system for comparative functional genomics of Saccharomyces yeasts.

Caudy AA, Guan Y, Jia Y, Hansen C, DeSevo C, Hayes AP, Agee J, Alvarez-Dominguez JR, Arellano H, Barrett D, Bauerle C, Bisaria N, Bradley PH, Breunig JS, Bush E, Cappel D, Capra E, Chen W, Clore J, Combs PA, Doucette C, Demuren O, Fellowes P, Freeman S, Frenkel E, Gadala-Maria D, Gawande R, Glass D, Grossberg S, Gupta A, Hammonds-Odie L, Hoisos A, Hsi J, Hsu YH, Inukai S, Karczewski KJ, Ke X, Kojima M, Leachman S, Lieber D, Liebowitz A, Liu J, Liu Y, Martin T, Mena J, Mendoza R, Myhrvold C, Millian C, Pfau S, Raj S, Rich M, Rokicki J, Rounds W, Salazar M, Salesi M, Sharma R, Silverman S, Singer C, Sinha S, Staller M, Stern P, Tang H, Weeks S, Weidmann M, Wolf A, Young C, Yuan J, Crutchfield C, McClean M, Murphy CT, Llinás M, Botstein D, Troyanskaya OG, Dunham MJ.

Genetics. 2013 Sep;195(1):275-87. doi: 10.1534/genetics.113.152918. Epub 2013 Jul 12.

7.

Visualization and analysis of mRNA molecules using fluorescence in situ hybridization in Saccharomyces cerevisiae.

McIsaac RS, Silverman SJ, Parsons L, Xu P, Briehof R, McClean MN, Botstein D.

J Vis Exp. 2013 Jun 14;(76):e50382. doi: 10.3791/50382.

8.

Phylogenetic portrait of the Saccharomyces cerevisiae functional genome.

Gibney PA, Hickman MJ, Bradley PH, Matese JC, Botstein D.

G3 (Bethesda). 2013 Aug 7;3(8):1335-40. doi: 10.1534/g3.113.006585.

9.

Genetic Basis of Ammonium Toxicity Resistance in a Sake Strain of Yeast: A Mendelian Case.

Reisser C, Dick C, Kruglyak L, Botstein D, Schacherer J, Hess D.

G3 (Bethesda). 2013 Mar 11. pii: g3.113.005884v1. doi: 10.1534/g3.113.005884. [Epub ahead of print]

10.

Automating the construction of gene ontologies.

Dolinski K, Botstein D.

Nat Biotechnol. 2013 Jan;31(1):34-5. doi: 10.1038/nbt.2476. No abstract available.

11.

Synthetic gene expression perturbation systems with rapid, tunable, single-gene specificity in yeast.

McIsaac RS, Oakes BL, Wang X, Dummit KA, Botstein D, Noyes MB.

Nucleic Acids Res. 2013 Feb 1;41(4):e57. doi: 10.1093/nar/gks1313. Epub 2012 Dec 28.

12.

TOR and RAS pathways regulate desiccation tolerance in Saccharomyces cerevisiae.

Welch AZ, Gibney PA, Botstein D, Koshland DE.

Mol Biol Cell. 2013 Jan;24(2):115-28. doi: 10.1091/mbc.E12-07-0524. Epub 2012 Nov 21.

13.

Decoupling nutrient signaling from growth rate causes aerobic glycolysis and deregulation of cell size and gene expression.

Slavov N, Botstein D.

Mol Biol Cell. 2013 Jan;24(2):157-68. doi: 10.1091/mbc.E12-09-0670. Epub 2012 Nov 7.

14.

Why we need more basic biology research, not less.

Botstein D.

Mol Biol Cell. 2012 Nov;23(21):4160-1. doi: 10.1091/mbc.E12-05-0406.

15.

Loss of a 20S proteasome activator in Saccharomyces cerevisiae downregulates genes important for genomic integrity, increases DNA damage, and selectively sensitizes cells to agents with diverse mechanisms of action.

Doherty KM, Pride LD, Lukose J, Snydsman BE, Charles R, Pramanik A, Muller EG, Botstein D, Moore CW.

G3 (Bethesda). 2012 Aug;2(8):943-59. doi: 10.1534/g3.112.003376. Epub 2012 Aug 1.

16.

Perturbation-based analysis and modeling of combinatorial regulation in the yeast sulfur assimilation pathway.

McIsaac RS, Petti AA, Bussemaker HJ, Botstein D.

Mol Biol Cell. 2012 Aug;23(15):2993-3007. doi: 10.1091/mbc.E12-03-0232. Epub 2012 Jun 13.

17.

Combinatorial control of diverse metabolic and physiological functions by transcriptional regulators of the yeast sulfur assimilation pathway.

Petti AA, McIsaac RS, Ho-Shing O, Bussemaker HJ, Botstein D.

Mol Biol Cell. 2012 Aug;23(15):3008-24. doi: 10.1091/mbc.E12-03-0233. Epub 2012 Jun 13. Erratum in: Mol Biol Cell. 2014 Apr;25(8):1409.

18.

A conserved cell growth cycle can account for the environmental stress responses of divergent eukaryotes.

Slavov N, Airoldi EM, van Oudenaarden A, Botstein D.

Mol Biol Cell. 2012 May;23(10):1986-97. doi: 10.1091/mbc.E11-11-0961. Epub 2012 Mar 28.

19.

Yeast: an experimental organism for 21st Century biology.

Botstein D, Fink GR.

Genetics. 2011 Nov;189(3):695-704. doi: 10.1534/genetics.111.130765. Review.

20.

Metabolic cycling without cell division cycling in respiring yeast.

Slavov N, Macinskas J, Caudy A, Botstein D.

Proc Natl Acad Sci U S A. 2011 Nov 22;108(47):19090-5. doi: 10.1073/pnas.1116998108. Epub 2011 Nov 7.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Loading ...
Write to the Help Desk